Name:

\qquad

1. (1 pt.)

- Read all material carefully.
- You may refer to your books, papers, and notes during this exam.
- No computer or network access of any kind is allowed (or needed).
- Write, and draw, carefully. Ambiguous or cryptic answers receive zero credit.
- Use the conventions used in class and the textbook for notation, algorithmic options, etc.
Write your name in the space provided above.

2. (9 pts.) For each value of $n=0,1, \ldots, 5$, depict all possible binary min-heaps containing the n keys $1,2, \ldots, n$. Justify your answer briefly, explaining why the heaps you depict are the only ones possible.
[additional space for answering the earlier question]
3. (5 pts.) For each binary heap of Question 2 either provide a sequence insertions that produces the tree using no swaps (when following the standard method for binary heap insertions) or prove that no such sequence exists.
4. (10 pts.) Repeat Question 3 replacing using no swaps with using exactly one swap. For each sequence, depict the heaps immediately before and immediately after the swap operation.
[additional space for answering the earlier question]
5. (5 pts.) Repeat Questions 2, 3, and 4 for the single value $n=6$. You may abbreviate your depictions as long as the result is unambiguous and precise.
[additional space for answering the earlier question]
