
COS 451/550 Spring 2018 HW02 100 pts.; 6 pages. Due 2018-02-15 2:05 p.m.
c© 2018 Sudarshan S. Chawathe.

Name:

Follow the guidelines of the previous homework for packaging, submission, and allowable
use of resources. Use the class newsgroup for questions and discussions. You should submit
(1) a hard-copy of pages 1–4 of this assignment with your answers filled in, and (2) an
electronic package that contains the source files for your work on the programming questions,
by following the submission procedure described in class and on the class newsgroup.

1. (1 pt.) Write your name in the space provided above.

2. (9 pts.) Provide DFAs for each of the following languages. Depict the automata
graphically in addition to providing their formal definitions. Briefly explain why they
are correct.

(a) Strings over the alphabet {1, 2, 3} that contain either 112, 21223, or 312 as sub-
strings.

1

(b) Strings over the alphabet {a, b} in which every occurrence of a is followed imme-
diately by three consecutive bs.

2

(c) Binary strings in which the number of 1s is a multiple of 7.

3

3. ? (10 pts.) Determine whether the language L1 defined below is regular. If so, provide
a constructive proof by presenting a finite-state automaton (nondeterministic allowed)
that accepts the language. Otherwise, prove nonregularity using the tools from the
textbook. (Recall the notation 1n denotes a string a n 1s.)

L1 =

{
1n | ∃k,m ∈ N

[
n = k2 =

m∑
i=1

i

]}

4

4. (90 pts.) Implement an interpreter for the language Lexaard (language for exploring
automata and related doodads), outlined below. The description covers the main
points but is not exhaustive. Use discussions in class and on the class newsgroup for
clarifications and further details.

You should submit a well documented source code package that includes a Makefile
and README file with the conventional contents. Your submission should yield an
executable named lexaard which reads from standard input and writes to standard
output.

The language consists primarily of newline-terminated statements, with exceptions
noted below. Each statement, and each line of the input, consists of whitespace-
separated tokens, where whitespace is a nonempty sequence of any mix of spaces and
tabs. Whitespace at the beginning and end of a line is permitted but not required. The
first token of each statement is a verb that determines how the rest of the statement
is interpreted. The language uses only an easily printable subset of the 7-bit ASCII
character set (letters, digits, punctuation, space, tab, newline) and is case sensitive.

The language has three types of objects: symbols, strings, and automata. Symbols are
unquoted strings (sequences of characters) that follow the typical rules for identifiers
in a language such as Java or C. Examples: x, m101, my first automaton. Strings use
the familiar quoted representation. Examples: "x", "am I a string?". Automata
are represented as suggested by the following two equivalent representations of the
automaton M1 from page 36 of the textbook. (For clarity, we use to denote a space
character. There is a single newline character terminating each line, and a single blank
line that terminates each representation.)

fsa

m101

 0 1

 q1 q1 q2

*q2 q3 q2

 q3 q2 q2

fsa

 m101 a rather pointless comment

0 1

 q1 q1 q2

 *q2 q3 q2

q3 q2 q2

An FSA’s representation always begins with the literal fsa followed by a newline. The
first token on the next line (m101 above) is a descriptive identifier associated with the
automaton. Any further tokens on this line are ignored. The next line lists the alphabet
of the automaton ({0, 1} above). These lines are followed by one line for each state
of the automaton (three lines for states q1, q2, and q3 above). The state listed first
(q1) is the start state of the automaton. An accepting state is denoted by adorning its
line with a * prefixed to the state’s name in the leftmost column. The representation
suggested above is intentionally very similar to the usual tabular description of an
automaton’s state-transition table, such as the one on page 36 of the textbook. For
example, δ(q3, 1) = q2 above. In both input and output, it is good style to format
an automaton’s representation as on the left above to ease its tabular interpretation.
However, such formatting is not required, and the representation on the right yields
an identical automaton.

5

The interpreter must produce output exactly when and as described below for each
statement. In particular, it must not produce extraneous output such as prompts and
informative feedback unless noted below. The descriptions use typewriter font for
literal text and italic font for meta-variables.

quit Exit the interpreter completely. The interpreter must also exit at the end of
standard input.

print x Print the external representation of the object named x. It is not an error if
x is undefined; print nothing in this case. Automata should be printed in a well-
formatted manner (but it is not strictly incorrect to print them in a different,
valid manner).

define x v Define the name x to be the object represented by v.

run x i Run the automaton named x on the input string literal i. It is an error if x
is not defined to be an automaton. The output is a single line containing accept

or reject depending on whether the automaton accepts or rejects the input.

run x n As above, except n is the name of a previously defined string that is used as
input to the automaton.

Blank lines, i.e., lines composed of only whitespace, are ignored, except when they are
used in representations of objects. For this submission, you may assume that all test
input will be valid; however, you are encouraged to implement at least rudimentary
error checking.

define x "01011"

print x

define x "1101011"

print x

define m1 fsa

m1orwhatever

0 1

q1 q1 q2

*q2 q1 q2

print m1

run m1 "000101010010"

run m1 "0001010100101"

run m1 "0001010100100"

run m1 x

quit

01011

1101011

m1orwhatever

 0 1

 q1 q1 q2

*q2 q1 q2

reject

accept

reject

accept

Figure 1: Sample input (left) and output (right).

6

