- 1. Write your name below:
- 2. Recall the notation [n] to represent the set of n integers [1, 2, 3, ..., n], for $n \ge 0$. (Thus [0] represents the empty set in this notation.) Let Σ be a finite set, called the *alphabet*. A finite sequence, of length $n \ge 0$, over Σ is essentially a function from the set [n] to Σ .
 - (a) Consider $\Sigma = \{A, B, C\}$, n = 5, and a function s that maps 1, 2, 3, 4, 5 to A, A, C, B, C, respectively (e.g., s(3) = C).
 - (b) It is conventional to denote s(i) by s_i , so that we may say $s_3 = s_5 = C$, and $s_2 = A$.
 - (c) It is also conventional to denote a sequence by simply concatenating the s_i values for i = 1, 2, ..., n, in order. Thus, we may write s = AACBC.

Consider the sequence (using the third convention) t = banana. Represent it using the other two conventions.

3. Recall the textbook's definition of *subsequence* (p. 394). Of the two sequences below, is the second a *subsequence* of the first? Why or why not?

Y A B A D A B A D A A B B A D A D A

4. If s is a subsequence of both t_1 and t_2 then s is called a *common subsequence* of t_1 and t_2 . Find three different common subsequences of the two sequences of Question 3.

5.	Determine,	using an	arbitrary	method	, the	longest	common	subsequence	(LCS)	of the
	two sequences below. Briefly explain why your answer is correct.									

Y A B A D A B A D A A B B Y A D A D D A B A Y

- 6. How many sequences (exact number) would be checked by the exhaustive enumeration algorithm (noted near the bottom of page 394 of the textbook)? Justify your answer.
- 7. Use the result of Question 9 to generate an *edit script* that edits the first sequence of Question 5 into the second. Describe your algorithm and explain why it is correct.

8. Trace the operation of the LCS-Length algorithm (p. 397) on the sequences of Question 5. Depict the state of the b and c arrays (1) after four iterations of the outer nested loop and (2) at the end of the algorithm.

9. Trace the operation of the Print-LCS algorithm (p. 397) on the result of Question 8. Provide the arguments for each of recursive call of Print-LCS.

10. Use loop invariants and related methods to prove or disprove the correctness of the following implementation of binary search.

```
public static int search(int[] haystack, int needle) {
   int lo = 0;
   int hi = haystack.length - 1;
   while(lo + 1 < hi) {
      int mid = (lo + hi) / 2;
      if(haystack[mid] > needle) hi = mid;
      else if (haystack[mid] < needle) lo = mid;
      else return mid;
   }
   for(int i = lo; i <= hi; i++) {
        if(haystack[i] == needle) return i;
   }
   return -1;
}</pre>
```