1. Write your name below:
2. (4 pts.) Is the following a valid predecessor matrix for a graph with vertices $\{1,2,3,4\}$. (where \perp denotes NIL)? If so, depict the shortest-paths tree it encodes for source vertex 3 ; otherwise, explain clearly why it is not valid.

$$
\left(\begin{array}{cccc}
\perp & 3 & 4 & 1 \\
2 & \perp & 2 & 3 \\
2 & 3 & \perp & 2 \\
4 & 4 & 1 & \perp
\end{array}\right)
$$

3. Provide the adjacency matrix of the directed graph depicted below, indexing the vertices in alphabetical order.

4. Depict the output of Extend-Shortest-Paths $\left(L^{(0)}, W, L^{(1)}, n\right)$ (p. 650 of the textbook), where W is the matrix of Question 3 with n set appropriately.
5. Trace the execution of the textbook's Slow-APSP algorithm (p. 652) on the graph of Question 3, using Fig. 23.1 (p. 652) as a model.
6. Repeat Question 5 using the textbook's Faster-APSP algorithm (p. 653).

7. Repeat Question 5 with the textbook's Floyd-Warshall algorithm (p. 657), using Figure 23.4 (p. 658) as a model.
