
COS 454/554 Fall 2022 HW01 200 pts.; 8 pages. Due 2022-09-16 9:05 a.m.

© 2022 Sudarshan S. Chawathe

Name:

This assignment is a simple getting-started exercise and much easier than ones that follow.
The focus is on figuring out various details such as packaging, submission, coding style,
testing, timing, etc. that, while not specific to algorithms or this course, are nevertheless
essential for completing other work. Please use the class discussion forum for clarifications
and discussions.

The main task: blurring an image We wish to write a program that blurs an optical
image (picture), reading input from standard input and writing output to standard output,
along with optional diagnostics to standard error. While there are many interesting variations
of this problem, we will use a very simple one because our focus is on the other aspects noted
above. Briefly, this simple variation replaces each pixel of an image with the mean (rounded
up to the nearest integer) of the pixels in a box centered on that pixel. In cases where some
of the box falls outside the array (for pixels near the edges), the part of the box that contains
no valid pixels is simply ignored.

In more detail, consider the input composed of a w×h (width times height) input array P
of nonnegative integers (the pixels) and another nonnegative integer b (the blurring strength).
Using the textbook’s convention of array indices starting at 1, define the neighbors centered
at (c, r) as:

Ncr = {Pxy | c− b ≤ x ≤ c + b, r − b ≤ y ≤ r + b, 1 ≤ x ≤ w, 1 ≤ y ≤ h}

Using the above notion of neighbors, the output may be defined as a w × h array Q with
Qcr = mean(Ncr) using the conventional arithmetic mean.

Conceptually, the input consists of a two-dimensional array of nonnegative integers (pixel
values) and another nonnegative integer that is the blur strength. In more detail, the input
is a sequence of at least three nonnegative integers. The first is the blur strength, while
the second and third are the width and height of the image (number of rows and columns
of the array). The remaining integers specify the elements of this two dimensional array in
row-major order. Any missing values are treated as 0.

Conceptually, output is an array whose dimensions are identical to those of the input
array and whose elements are the blurred pixel values. In more detail, each row of the array
corresponds to a single line (newline-terminated) in the output, in array order. Each line
consists of the integers in the cells within that row, in array order, with adjacent integers
separated by a single spaces.

Questions

1. (1 pt.) Write your name in the space provided above.

1



2. (9 pts.) Provide a shortest valid input. Explain both why it is valid and why it is
shortest.

3. (10 pts.) Provide output corresponding to the input of Question 2. Is the output
unique? Explain your answer.

2



4. (10 pts.) Describe an algorithm that implements the blurring process described above.
Describe your algorithm in English as precisely as possible.

3



5. (10 pts.) Explain why your algorithm is correct.

4



6. (10 pts.) Provide pseudocode, using the textbook’s style as a guide, for your algorithm.
Include explanatory comments and outline a proof of its correctness.

5



7. (10 pts.) State and justify the running time of your algorithm as a function of the
blurring strength b and the number of cells n = w × h.

8. (10 pts.) Repeat Question 7 for working space (memory use) instead of running time.

6



[additional space for earlier material]

7



9. (20 pts.) On the class discussion forum, post messages with sample inputs and outputs
for this assignment. Your inputs (and corresponding outputs) should be designed to
illustrate the problem as well as to test difficult cases (e.g., boundary cases or other
tricky situations). Include good explanations with your samples.

10. (100 pts.) Implement your algorithm. Test and document your work carefully and
submit your packaged source code and supporting documentation.

11. (15 pts.) Conduct a brief experimental study of your implementation, measuring the
running time for a suitable collection of inputs. Include your test code in your electronic
submission, with suitable documentation.

12. (15 pts.) Summarize your experimental results by making effective use of charts and
tables. Comment on how well the experimental results match the predictions based on
your answer to Question 7. Highlight any significant differences and explain them the
best you can. Include these results, comments, and explanations as a single PDF file
in your submission.

Submission: Submission consists of (1) a hardcopy of this assignment with answers filled
in neatly and (2) a well-packaged electronic submission with answers to the programming
components implemented in standard Python 3 with minimal library dependencies. Refer to
the syllabus for submission instructions. Name the electronic submission using the template

cos454-hw01-lastname -firstname -pqrs.tgz

where lastname and firstname are replaced by the obvious and pqrs is replaced by a 4-
digit string of your choosing. The submission should be designed so that the command tar

zxf cos454-hw01-lastname -firstname -pqrs.tgz results in the creation of a directory
cos454-hw01-lastname -firstname -pqrs . In that directory should be all the source code
(organized in further sub-directories as needed) as well as a README file with the usual
semantics. Do not submit any kind of non-source files (e.g., .pyc files or other artifacts).

8


