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Multidimensional Bin Packing Algorithms

Abstract: A comparative study is made of algorithms for a general multidimensional problem involving the packing of &-part objects
in k compartments in a large supply of bins. The goal is to pack the objects using a minimum number of bins. The properties and limita-
tions of the algorithms are discussed, including k-dimensional analogs of some popular one-dimensional algorithms. An application of

the algorithms is the design of computer networks.

Introduction

Consider a collection of k-part objects, each part of every
object having size between 0 and 1, and a large supply of
bins, each divided into k& compartments and each com-
partment with capacity 1. The bin packing probiem is to
pack the objects into as few bins as possible with each
part of every object going into the correct compartment
in a bin. The one-dimensional version of this problem
(i.e., k = 1) has been studied thoroughly [1-5]: it has
applications in operations research [6-9], computer
operating system design, and memory allocation [1, 2].
Little is known about the general k-dimensional problem,
which has applications to computer network design [ 10].
To formalize our problem, we begin by introducing some
notation.

Definition a) For k = 1, let 8" = {(a,,- - a)| all i, 0=
a;= 1}:b) Letn= {1, -, n}: and c¢) Given a function
v:n — 6%, and a partition ¥ ={S,--+, S} of n, we say
that . is v-admissible if for all j € m. X, v(i) € 6",

Remark Observe that admissible partitions correspond
to bin packings, where the k-part objects are represented
by elements of 8". Thus, any bin packing algorithm yields
some admissible partition, and we infer properties of the
algorithm from properties of the corresponding partition.
In this paper we are interested in analyzing all “‘reason-
able” algorithms. One natural criterion for reasonable
algorithms is that they produce “‘irreducible” partitions,
a concept which we define now.

Definition Let v:n — 6" be a function and .# = {S,," ",
S,.} be a partition of n. a) We say that .’ is v-irreducible
if # is v-admissible, and for all /, j € m, /| # j implies

> wnegd

AESUS,

b) We let ¥ (v) be the set of all v-irreducible partitions.
¢) We let opt(v) = min {|Z||£ € €(v)}.
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Clearly, opt(v) gives the smallest number of bins into
which the list of vectors v(1), -+ v(n) can be packed,
since any optimal partition must be irreducible.

For every fixed integer £ = 1, it is not hard to show that
the following formulation of the bin packing problem is
NP-complete in the sense of Cook [6] and Karp [ 14].

Let the input be a function v:n — 6" and a positive
integer /, and then try to determine if there exists a
v-admissible partition .# of size [.

Hence, another natural criterion for reasonable bin
packing algorithms is that each has its running time
bounded by some polynomial of the input length. In this
paper, by a reasonable bin packing algorithm, we mean
that 1) it produces v-irreducible partitions and 2} it
possesses polynomially bounded running times. We
will show that constraint 1) implies for all ¥ € % (v)
|.#|/opt(v) < k + 1. Furthermore, for each & =1 and
5 > 0, we can find an n, v, and .¥ € € (v) such that ||/
opt(v) = (k+ 1—8):1i.e., k+ | is a sharp upper bound
(independent of n) on the ratio |%|/opt(v). It thus
follows that any reasonable algorithm will do no worse
than (k + 1) times the optimal packing in terms of the
number of bins used. On the other hand, since whether
all NP-complete problems have polynomial-time-
bounded solutions is still an open question at the present
time, we are not able to show any lower bound on the
ratio |.#|/opt(v). However, we show that if NP-com-
plete problems do not have polynomial-time-bounded
solutions, a most likely result, 2) implies that all reason-
able heuristic algorithms will produce in the worst case
at least 50 percent more than the optimal number of
bins.

For the one-dimensional case, several algorithms have
been noted, namely, the first fit algorithm, the best fit
algorithm, the first fit decreasing algorithm and the best
fit decreasing algorithm [1-5]. For convenience, we
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state the k-dimensional versions of these algorithms. We
have a function v:n — Gk, and an infinite collection of
bins 5, §,," -, which at stage 0 are all empty. At stage i,
we place i in one of the bins according to one of the four
rules subsequently described. (After stage n, the non-
empty bins yield a partition of n. We use S to indicate
the set of numbers in §; at stage j.)

e First Fir Algorithm (FF)
At stage j, for j = 1, place j in §,, where A is the least
integer such that v(j) + 2. v(1) € 0",

s Best Fit Algorithm (BF)
At stage j, for j = 1, place j in §,, where X is the least
integer such that

L. v(j) + S v(1) € 6", and

2. for all i, v(}') + 2,6554 v(t) € 8" implies that the sum
of the & components of X,c¢- v(?) is not greater than
the sum of the k& components of Eres(‘ v(1).

* First Fit Decreasing Algorithms (FFD,, FFD,, FFD,)
We specify a linear quasi-order, <, on 6", and permute
the domain of v so that i = j implies that v(j) =< v(i). Then
we apply the FF Algorithm. The following are a few
quasi-orders that we consider in this paper. Let a, b € 6"

Lexicographical FFD (FFD,)

a = b iff a = b or the first nonzero component of h — a
is positive.

Maximum Component FFD (FFD,)

a = b iff the maximum component in b is not less than the
maximum component of a.

Maximum Sum FFD (FFD,)

a = b iff the sum of the components of b is not less than
the sum of components of 4.

* Best Fit Decreasing Algorithms (BFD,, BFD,, BFD,)
We proceed exactly as with the First Fit Decreasing
Algorithms, but we apply the BF rather than the FF
Algorithm whenever appropriate.

We show below that for each & and for every & > 0,
there exists a function v:n — 6", such that all the algo-
rithms above yield the same partition, A(v), and that
|A(v)|/opt(v) = (k—8). Thus, these algorithms do little,
if at all, better than any reasonable algorithm, in the
worst case.

Upper bound
We use the following conventions throughout this

paper.
1. Given two sets, S and 7, S — T denotes the set of all
elements in S and not in T.

2. If § is the empty set, we arbitrarily set min § =max S=
0. Otherwise, if S is a non-empty set of real numbers,
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then min § (max S) denotes the least (greatest)
element in S.

3. If v:n — 6", then for i € n, j E k, v;(i) denotes the
Jth component of v(i).

4. We use " (or simply ¢, if & is obvious) to denote the
vector in 8" with all components equal to €.

5. We use lf (or simply /;, if & is obvious) to denote the
vector in 6" with all components zero, except for the
Jjth component, which is 1.

6. For all real numbers r, [ 7 denotes the least integer i
such that i = r, and L+ ] denotes the greatest integer i
such that i = r,

Lemma 1 [13] For every function f:m — {r|r = 0},
there exists a function g:m — {0, 4, 1} such that, for all
i, j € m. The statement f(i{) + f(j) = 1 implies that
g(i) + g(j) Z 1, and 31, ¢(i) = 3, f(D).

Proof Let

Uy={f()]i € mand f(i) € {0, 4, 1}},
L,={ilfi) € U,and f(i) > }},

S,={ilfli) € U, and f(i) < }},

V,={ili € Lyand f(i) + min {f(j)|j € S} = 1},

max {f(D|i € (L,—V)}  if L #V,
af=

3 otherwise,
and

W,={ili€ S,and o, + f(i) < 1}.

The proof proceeds by induction on the size of U,
If |U/| = 0, by setting ¢ = f, the lemma is trivially true.
Let us suppose that the lemma is true whenever |U,| = p,
and assume then |U,| = p + 1. We now consider three
cases.

Case 1 |W,| = 0. We first observe that, by definition of
W, |W, = 0 implies S, = . Consider the function
g:m — {0, %, 1} such that, for all i € m,

) iffe U,
(D) ={% if f(i) € Uyand f(i) < I, and
1 if f(i) € Uyand f()) > 1:

g certainly has the required property. The lemma

follows.

Case 2 |V,;| = |[W,| # 0. Consider the function f’:m —
{r|r = 0} such that, for all i € m,

Gy ifigv,uw,
1100 ={ 1 if i € V,, and
0 ifie W,
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Notice that the size of the set U, = {f’({)|i € m and
(i) & {0, &, 1}} is no greater than p. By induction
hypothesis, there exists a function g:m — {0, §, 1} such
that, for all i, j € m, f'(i) + f'(j) = 1 implies g(i) +
g(j) =1and 3" ¢(i) =Z f'(i). By the construction of
f, foralli,j€m, f(i) +f(j) = 1implies f (i) +f(H)y=1
and 3;° f'(i) = 37, f(i). The lemma follows.

Case 3 |V, > |W,| # 0. Consider the function f”:m —
{r|r = 0} such that, for all i € m,

£00)
£10) = taf

l—af

ifigV,Uuw,
if i € V,, and
ifiew,.

Notice that the size of the set U,,={f"(i) | i € m and
£"() & {0, %, 1}} is no greater than p. By induction
hypothesis, there exists a function g:m — {0, 4, 1} such
that, for all i, j € m, (i} + f"(j) = 1 implies g(i) +
g(j) = Tand 31, g(i) = S, f"(i). By the construction of
f7, for all i, j € m, f(i) +f(j) = 1 implies /(i) +f"(j) = 1
and 3", f"(i) = 3, f(i). The lemma follows. ~ [J

Definition a) A function f:m — ¢" is called final, if for all
i, j € m there exists p € k such thatf;)(i) +fp(j) = 1.b)
For m, k = 1, we use .# (m, k) to denote the set of all final
functions f:m — 6". ¢) For m, k = 1, we use p(m, k) to
denote min{max {", f,()|j € kK}|f € F(m, k)}.

Remark Given a function v:n — 6" and a v-irreducible
partition, .¥’ = {S,,- -+, §,,}, the function f:m — 6" given
by f(i) = 2 ,es,v(A) is final. Observe that m = opt(v) =
max{Z;_, v;(i) |j€ k} =max{Z] S0 |jEk}=p(m, k).
Hence, |.#]/opt(v) < |L|/p(m, k) = m/p(m, k). We
will calculate the exact value of p(m, k) and use it to

prove that |-#|/opt(v) = (k + 1) for all ¥ e €().

Lemma 2 For every final function v:m — 6", there exists
a final function #:m — {0, £, 1}* such that a) for all j € k,
3" (i) = XL, vy(i); and b) either the size of the set
S, = {ili € m and «;(i) = 1 for some j € k} is not less than
m — 1, or there exists a j, € k such that, for all i € m —
S, "f'o(i) =13

Proof For every final function v:m — 6", by Lemma 1,
there exists a final function v':m — {0, %, 1}* such that
3" o) = 5, vy(i) for all j € k. Let S, ={ili € mand
vi(i) =1 for some j € k}. The proof of thls lemma pro-
ceeds by induction on the sizeof m—S_. If[m—§_[=1,
then by setting u =v’, the lemma is trivxally true. Suppose
the lemma is true whenever [m — S| = I. Assume then
fm— S| =1+ 1. If there exists a j, € k such that, for all
[IEm—S,, v (') =4, then, by setting = v’, the lemma
is trivially true Otherwise, consider the following two

cases!:

Case | there exists i, i, Em— S, j,, j, € k with i, # i,
and j, # j, such that vjfl(il) = U}I(iz) =% and v}fb)(il) =
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v; (i,) = 4. Consider the function w:m — {0, 4, 1} such
that, for all i € m,

v' (i) it i€ {i, i},

w(i) =40, if i=i, and
I, if i =i,

Notice that the size of the set §, = {i|w;(i) = 1 for
some | € m and j € k} is greater than the size of §,..
Hence, |[m — S,| = [, and we apply the induction hypoth-
esis and the fact that 3", w,() = 3" vi(i) for all j € k.

i=1 :1;

Case 2 For any pair i, i, Em— S, with i, # i,, there
exists a j, € k such that U}l(il) = U;l(iz) = % and, for all
JE€kandj#j,v)(i,) +v)(i,) <4

In this case, there must exist an i; € m — SL, and j,,

, € k with j, # j, # j; # j,, such that v; (1 )(iz) =
vj, (i) = 0 and v; L) =) (i) =] Ly v]f?(i ) =%, since
v 1s final. Con51der the functlon w m — {0, 3, 1}* such
that, for all / € m,

-

vy it € i 0y i),
I ifi=i,

wii) = IJA2 if i =1i,, and
I if i = i,

By a;l argument similar to that used in Case 1, the
lemma follows from the induction hypothesis and the fact
that 3 w;(i) = 37, vj(i), for all j € K. O
Theorem 1 For all m = 2 and k = 1, p(m, k)=
Lm/(k+ 1)1+ I(m, k), where

if m=0mod (k+ 1),

0
l(m.k)={% if m=1mod (k+ 1), and
1 otherwise.

Proof By Lemma 2, it follows that there exists a fi-
nal function w:m — {0, 4, 1} such that a) max{3],
u;(i)|j € k} = p(m, k), and b) either the size of the set
S, = {ilu;(i) =1 for some i € m and j € k} is no less than
m— 1 or there exists a j, € k such that, foralli€ m— S,
ujo(i) =1 Let m = a(k + 1) + B where «, B are integers
such that « = 0 and k¥ = 8 = 0. Notice that, since m = 2,
we have a+ 8= 1. Furthermore, « + 8= 1 implies §=0.
Let us first prove that p(m, k) = m/ (k+ 1) ) +1(m, k).
Consider the following two cases.

Case 1S, Z m— 1. In this case, we have
p(m, k) = max{E u(hlj € k}

=1 (m—1)/k]1 smceEE
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=[lalk+ 1) + B— 1]/k]
=[a+ [(a+B—1)/k]]

o e if 8=0, and
T la+1 otherwise.

On the other hand,
Lm/(k+ D)1+ 1U{m k) =a+ I(m, k)

o if =0,
=< at+i if =1, and
a+1 otherwise.

Obviously, p(m, k) = Lm/ (k+1) J+1(m, k) in this case.

Cuase 2 |S,| = m— 2 and there exists j, € k such that, for
ali€Em—3S§,, ujo(i) =14

Consider the set T = {i|uj0(i) > 0}, If |T| = 2a +
2/{m, k), then

p(m, k)= max{E u(i)lj € k}

i=1
> E ujo(i)
i=1
Z X |T|
Za+i(m,k)

=Lm/(k+ 1)1+ Hm, k.

If, however, |T| = 2a + 2{(m, k) — 1, then k # L.
Otherwise we have |S | = m—2and |7} = 2a+ 2/(m, k) —

=m — 1. The sizes of S, and T imply that « is not final.
Notice that

plm, k)= maX{i u(i)]j € k}

> max{z u(Hljek— {jo}}
=z [(m—|T))/ (k= 1)1

m k

(since >N wi)zm-— |T|)

i=1 j=Lj=j,

= [(alk—1) +B—=2l(m, k) + 1)}/ (k—1)]
=a+1
=Llm/(k+ 1)1+ 1m, k).

Hence, in all cases p(m, k) = 1Lm/ (k+ 1)1+ 1{m, k).
We next show that p(m, k) <L m/(k + 1) |+ I(m, k),
and thus complete the proof of the theorem. For all
m =2 and k = 1, consider the function 7:m — §" such that

3 X1, ifi=1mod(k+ 1) or2 mod(k+ 1),
(i) =<1, if i=0mod(k+ 1), and

I ifi=Bmod(k+1) and 8 = 3.

B-1
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Obviously, 7 is final and X, 7,(i) = max{Z, 7,(})]
J € k}. Notice that 3", 7,(i) = Lm/(k+ 1) 1+ I(m, k).
The result now follows from the definition of p(m, k).

O

Theorem 2 If v:n = 6"(k = 1) and .¥ € #(v), then
|Z|/opt(v) = (k+1).

Proof We first observe that if opt(v) = 1, |-#| =1 for
all & € ¥(v) [in fact € (v) = {{n}}]. Clearly, the theorem
is true in this case. Hence, we may assume opt(v) = 2.
From the remark preceding LLemma 2, it follows that
[-Z|/opt(v) = (max{m/[p(m, kK1|m = 2, k = 1}).
However, forall m =2, and k= 1, we have m/ [ p(m, k)
=m/[Lm/k+ )] +1(m Kl =m/Tm/k+ 1)] <
m/[m/(k+1)]=k+ 1. O

We next show that the upper bound derived in Theo-
rem 2 is sharp.

Theorem 3 For every integer k = 1 and & > 0, there
exists an integer n and a function v:n — ¢*, such that
for some . € € (v), |-#|/opt(v) = (k+1—39).

Proof Let L be a positive integer such that L =
[(k+1)/8]—1.Lete=1/[(k+1)L}and n=2(k+ 1)L.
Let v:n — 6" be given by

H1—e)l, if i = 2L,
| (1—e), fjL+1<i< G+ 1)L
(i) = (for2<j< k), and
e if (k+ DL+ 1=4

Let Z={S,," " Sy, ,)> Where S, = {i, (k+ 1)L + i} for
alli=1,2,--+, (k+ 1)L. Clearly, ¥ € ¥(v). Let ¥' =
{85+ S, ..}, where

{(2i— 1,20 U{jL+il2=<j=<k}, if1<i<L,

[R—

{tf(k+ D)L+ 1=¢=2(k+ 1)L}, ifi=L+1.

Clearly, .¥’ € ¢(v), and |.#|/opt(v) = |.Z|/|.¥'| =
(k+ DL/ L+ 1) =k+1—6. 0O

Lower bound

Let .Z (4, v) denote the partition of n produced by a
bin packing algorithm ¥ with respect to a given func-
tion v:n — 6" If o/ is reasonable, then .# (<, v) is
necessarily v-irreducible. Theorem 2 then indicates that,
for any given v, the ratio |.#(«#, v)|/opt(v) is bounded
above k + 1, a value independent of n. However, unless
NP = P, no reasonable algorithm will do very well, as
indicated by the following theorem.

Theorem 4 I NP # P, then, for any reasonable bin pack-
ing algorithm .7, there exists a function v:n —> 6" such
that |.# (7, v)|/opt{v) = 3/2.

IBM J. RES. DEVELOP.



Proof We shall show that if there exists an algorithm &/,
such that .# (., v)/opt(v) < 3/2 for all v:n — 6", then
we can effectively design a specific polynomial-time-
bounded algorithm to solve one NP-complete problem.
The specific NP-complete problem we pick is the so-
called partition problem which can be stated as follows:

Let the input be a set of n nonnegative integers
7 = {x,, X,. "% x,}, and try to determine whether there
exists a partition of .¥ into subsets U and V' such that
2‘weu =2 ev X

To determme whether a given input has such a prop-
erty, consider the following polynomial-time-bounded
algorithm:

Step 1 Check to see if any x, is greater than ‘Z" X
fori=1, 2, n. If the answer is positive, Vdoes
not have the property. Otherwise, go to step 2.
Step 2 Evaluate the function v:n — 6', given by
2x,
v(i) =—,

> %
j=1

Step 3 Compute ¥ (A, v). If | # (o, v)| =2, then ¥ has
the property. Otherwise % does not have the
property.

for alli € n.

Notice that 2£_, v(i) = 2 and /(% v) is v-irreduc-
ible, implying that |.%(.#, v)| is either 2 or 3. Since
|-# (, v)|/opt(v) < 3/2,so opt(v) =2 if and only if
|Z (A, v)| = 2. a

Remark The lower bound given here is a very loose one.
In fact, we never take the factor A into consideration.
The improvement on this lower bound is highly likely.

Lower bounds for specific algorithms

It is worthwhile to examine the performance of the
k-dimensional analogs of some popular one-dimensional
bin packing algorithms (FF, BF, FFD,, FFD,, FFD,,
BFD,, BFD,, and BFD,). We summarize the results in
the following theorem.

Theorem 5 For any integer kK = 1 and real number
§ > 0, there exists an integer »n and a function v:n — 6
such that al! the FF, BF, FFD,, FFD,, FFD,, BFD,,
BFD, and BFD, algorithms will yield the same partition
A € ¥ (v), such that |A]/opt(v) = (k—38).

Proof For any integer £ = 1 and real number & > 0, the
theorem is trivially true if 8 = kor k= 1. If k > & and
k> 1, let the integers M, N, N,. - . N be chosen in such
a way that (k/8) —1=M <N, < N, <---< N, and let
e = 1/[NJN, — 1){k — 1)]. Furthermore, set n =
Ek MN, and let 4; € 8" be the vector whose jth compo-
nent is equal to l/N while all the other components are
equal to €. Now deﬁne v:n — 6" such that, for all i € n,
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if 1= i< MN,,

A, if1+MN,=i= MN,+ MN,,
Jj-1 J

o(i) =94, if1+ 3 MN,=i= ¥ MN,, and
A=1 A=1

k-1 k
4, if1+ 3 MN,=i= T MN
A=1

A=1

It is easy to see that all the FF, BF, FFD, FFD,,
FFD,, BFD,, BFD, and BFD, algorithms will yield
the same partition, A = {5, §,,- -+, S;,} € €(v), where
forallj, 1=<j=kM,ifj=aM +Bwith0=a=k—1and
0=B=M,thenS,={ill+3_ MN, + (B~ DN,,
= i= 3}, MN, + BN_ }. Notice that the (a + 1)th
component of 2 . v(i) is equal to 1 and all the other
components of 2i=;_ v(i) are equal to N_,, € which is less
than 1 by the selection of €.

For convenience, let

J-1
V,=1{pl1+ 3 MN, + (i— (N~ 1)
A=1

=p= MN+1(N—1}
1

J
A=

where i € M and j € k. Furthermore, for j € k, let

Jj-1 J

={gl1+ 3 MN, + M(N;— EMN}
A=1 A=

Consider the partition P' =[S}, -+, S,,,,], where

.
UV.J. ifi #M+ 1, and

k
Uw, ifi=M+ 1.
j=1

It is easy to verify that P’ € €(v).
Observe that |A]/opt(v) Z|A|/|P|=kM/ (M +1) =
k—(k/M+1)) = k—38. O

Remark. We do not claim that the lower bound in
Theorem 5 is sharp. In fact, reasoning as in Theorem 4
and using the results in [1-35], it is not hard to show that,
for any & > 0, there exists some function vin — 6", for
which the FF algorithm produces a partition A € € (v),
with |Al/opt(v) = k+ (7/10) — 8.
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