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ABSTRACT. It is shown that ¥ (n), the size of the free distributive
lattice on n generators (which is the number of isotone Boolean functions
on subsets of an n element set), satisfies

V() < 20140008 (g, ).

This result is an improvement by a factor \/n in the 0 term of a previous
result of Kleitman. In the course of deriving the main result, we analyze
thoroughly the techniques used here and earlier by Kleitman, and show that

the result in this paper is “best possible” (up to constant) using these tech-
niques.

It was shown by D. Kleitman [4] that the number V(n) of elements of the
free distributive lattice on n generators, FD(n), is bounded from above by
2(1+eQUVA) log MEn for some constant c, where E, = ((»]2)) (thtoughout this
chapter log t means log, while In ¢# means the natural logarithm of ¢). Conse-
quently log ¥(n) is asymptotic to E,. In this paper we will improve the upper
bound by showing that yi(n) < 2(3+¢'(1/mlogm)En o0 come constant ¢

It is easy to see that y(n) is bounded from below by 2En. The best known
lower bound for log Y(n) is (1 + c2™"/?)E,, (see [6, Theorem 7.6] ; the lower
bound in [4] is larger than is warranted by the argument). Thus, the result given
here narrows the gap in the second order terms. Furthermore, as we shall show
later, the upper bound we obtain here for Y(n) is the best possible (up to constant)
using the techniques of [4] and those used in this paper. Thus, any improvement
in calculating Y(n) will require more than a minor revision of available techniques.

The following notation will be used throughout the paper. n shall denote
the set {1,...,n}, 22 the power set of n, G,’,, the set {S C niS|=r}, 7 the
quantity /7 In n, and {r} the quantity ~[-r] (ie., {r} is the least integér not
less than r). We will use iff as an abbreviation for if and only if. For our purposes
it is convenient to think of FD(n) as the set of all isotone (order-preserving)
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374 D. KLEITMAN AND G. MARKOWSKY

functions from 22 into the ordered set {0, 1} with 0 < 1.

Outline of proof. We partition 22 into disjoint chains in the way Hansel
did [3]. We proceed the way Hansel did, defining isotone functions (ie., order-
preserving functions from 22 into {0, 1} with 0< 1) successively on the chains
proceeding from shorter to longer chains. Unlike Hansel, we concern ourselves
with ordering all chains of the same length. Also, we allow only two choices on
all but a certain number (K) of chains. We prove that we construct every mono-
tone function at least once using every possible permutation of the original parti-
tion into chains, every ordering of chains of the same length (these will be defined
later), and every possible choice of K special chains.

We prove that the procedure works by analyzing in detail the nature of the ‘
partitions utilized—we find that in most cases (we shall make this more precise |
below) we are able to arrange it so that the two alternatives we allow in defining |
our function (no more than 3 alternatives are ever necessary) are the only ones
which need be considered. We do this by deriving an explicit formula for the
number of exceptional chains required to construct a given monotone function
using our procedure. We then show that this number is bounded by cE,/n for
some constant ¢, from which our theorem follows.

Of course the above is just a very sketchy outline of the proof. In the next
section, we will introduce much of the machinery we will be using and give a
much more detailed discussion of the argument.

Preliminaries. We now define a convention for later use. In dealing with
several quantities X, Y, Z such that X € ¢Y and Y < dZ, where ¢ and d are con-
stants, we will simply write X < ¢Z and not keep introducing a new symbol every
time we change the constant. Thus, we intend to use ¢ as a dummy symbol for a
constant. Often when we state an inequality we will not bother to state that it
holds only for n “sufficiently large”. |

We will use a basic partition of 22 into E, disjoint, connected, symmetric :
chains. This partition has been used by a grear many authors (DeBruijn, Hansel,
Kleitman and others) in working with 2%, We will use an explicit characterization
of this partition due to C. Greene and D. Kleitman [2]. We now give an informal
description of the characterization, from which it is not hard to derive a formal

i

one.

If § C n, we can think of S as a binary n-tuple (@y,...,a,), where g, = 1

ifi€eSanda; =0ifi ¢S. If we now think of the I’s as left parentheses and of
the O’s as right parentheses, we will in general be able to close parentheses and

also have some open parentheses. 1’s and O’s corresponding to closed parentheses
are called “bound”. Those corresponding to open parentheses are called “free”.
Consider the following example: (0, 1, 0, 1). This corresponds to J((. Thus we
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see that the first 0 and the last 1 are free, while the first 1 and the last O are
bound. If we now consider two elements of 22 to be equivalent iff they have
the same bound 1’s and 0’s (e.g., (0, 1, 0, 1),(0,1,0,0),and (1,1, 0, 1) are all
equivalent), then one can show that the equivalence classes are connected disjoint
symmetric chains which partition 22 into E,, chains. By a symmetric con’nected
chain of 2% we mean a totally ordered collection of subsets R CR
€+ CRyyy 4 such that [R,]| =i for each i, (Here f is half'iljﬁgf alif m 15 od
gral if n is odd.)
Note that the length of a chain containing R is equal to the number of free 1’s
in R plus the number of free 0’s in R.
This partition of 22 into chains was used by G. Hansel [3] to prove that
w.(n) < 3En, He proved that this partition has two very important properties.
11;:;::, tt:;r; ;r:h :x;:ltgh(a; ‘(:l,iln) v(z,l;ains of length n — 2p where 0 < p < [n/2].
. mean 1 less than the number of elements
in the chain. Second, given any three elements R 1 § Ry ¢ Ry of 27, forming a
;onnt;cted chain (.i.e., IRyl = IR;4 ;1 — 1), which belong to a chain of l’ength n-
c};:;in Zx; ;h: gtr;l:tliez;:’ox_ngl.ement of R, in the interval [R,, R;] belongs to a
. It follows from the second property above, that if one knows the values of
an isotone Boolean function f on all chains of length €n —2p -2 of the partition
that there will be at most two elements (forming a connected chain) in each chai;l
of length n — 2p for which the values of Jf have not been predetermined by the
monotonicity of f and the known valuesof 1. IfSC T is a connected chain of
two elements of 22, then since f is an isotone there a+re only three choices for
L fS)=0=F(T)f(S)=0and f(T) = 1;£(S) = 1 = f(T). Since there are at
most three choices for f on each chain, ¥(n) < 3En,

Below we will analyze the properties of this partition further with the use
of two groups of permutations. The first of these groups is S, , the symmetric
group on n letters, while the second one is Sy, the symmetn'c”group on J, letters
where J, is the number of blocks into which our permuted partitioning cl’:ains ’
will be broken. The detailed description of these groups and their operations will
be presented below.

For convenience, let Q = Cihovns Ce,} be the set of partitioning chains
of 2% described above. Let the chains be numbered according to length, with
shorter chains having smaller subscripts. S,,, being the group of permutat,ions of
&, operates in a natural way on 22, and consequently takes members of  into
(éonnected symmetric chains. Thus if ¢ € Sppand TCn, TE o(C) iff alhe

4

VfVe wish to consider the elements of o(£2) grouped into blocks having the
following property. Given any two chains, a(C;) and o(C;) belonging to the same
block, let T;and T} be the unique elements of o(C) N Gppyy),p and o(C) N

j
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Gin/21,n respectively, then |T; U T}l > [n/2] + 7 or equivalently IT; N T}| <
[n/2] — 7.

More precisely, if R € G217 n then by J(R, p) we mean the set {T €
G[,,/“,,,I IR N 71 = [n/2] - p}, and by J(R) the set U;___OJ(R, p). Of f:ourse,
ifR, TE€Gpz) 0 then |J(R)| = |J(T)|. Finally, let J, be the smallest mtegef
for which there exists a partition J* = {J;, ..., Jj,} of G(,,/” n Such that if
R,S€ J,,R#S, then R ¢ J(S). We obtain an upper bound for J, in Lemma 3.
Thus, we will say that o(C,) and 6(C;) belong to the same block if a(C) N |
Ginj2).n 304 6(C)) N G2, belong to the same element of J*. i

Let (0, 6) €S, x S;,, and consider the sequence o(Cy), . . ., 0(Cg,)- We
wish to reorder this sequence depending on the effect of 6 on the sequence Jss

««s Jy,- Westill wish each chain of length k to precede all chains of length
k + 2, but we will use 8 to alter the order of various chains of the same length
as follows. If o(C;) and o(C;) are of the same length and belong to the same
block as defined above, then o(C;) precedes o(C;) if and only if i <j. If o(C})
and o(C)) are of the same length, but o(C) N G, /21.m € Iy, and. o(Cp N o
Ginpin € Jy,» where k; # k;, then o(C,) precedes o(C) 1t: and only if G(k,)'< (%)

We worfc our way through the chains, the 6(C,)’s, in the order described
above. Suppose that we have assigned values to a monotone function f on the
first k chains o(C;, ), 0(Cy,), - - . » 0(Cy, ), and we wish to define f on o(C{k )
If f is already determined on o(C;, , ,) we simply proceed to the next chain. If
f is unpredetermined at exactly one point o(Cy, , ,), we make either of the two
possible choices, and then proceed to the next chain. We know, however., tflat f
can be unpredetermined on at most two points of o(Cy, , ,). Suppose this is .
indeed the case, and let R, § (R C S) be the two elements of 6(Cy, , ,) on which
fis unpredetermined. Consider the elements o~ '(R) and ¢™!(S) which belong to
Cigyy- Thinking of 0™*(R) and o~ 1(S) as binary n-tuples, it follows from the
fact that they both belong to the same chain that o~ 1(S) has a free 1 wh?re .
¢ 1(R) has a free 0, and that otherwise they are identical. Let this 1 be in pf)s1-
tion j. We call the position j the indicator of the triple (R, S, o) and denote lt.
by ind(R, S, g). We now count the number of bound 1’s in o"1(S) in the posi-
tions to the right of ind(R, S, 0). If the number of such bound I’s is at least
half the total number of bound 1’s in 0™1(S), we set f(R) = 0. Then we make
either of two permissible choices for f(S), and proceed to the next chain. If, on
the other hand, the total number of such bound 1’s is less than half the total
number of bound 1’s in 6~ 1(S), we set £(S) = 1. We then make either of two '
permissible choices for f(R), and proceed to the next chain. . . |

The procedure described in the preceding paragraph of constructing an iso-
tone function using the order induced by a given element of S, x Sy, shall be
referred to as Procedure I..
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Note that Procedure I never requires that more than two choices be made
in any given chain. Unfortunately, some isotone functions cannot be constructed
by Procedure 1. However, we will show that modifying Procedure I slightly
enables us to construct every isotone function at least once.

We modify Procedure I by simply allowing ourselves a certain number
(<K) of chains in which we make one of three choices, the way Hansel [3] did.
We will show below that there is a K < cE,/n (c a constant) for which this
modified procedure (referred to Procedure II) does indeed produce every isotone
function at least once.

More precisely, we claim that every isotone function will be constructed at
least once by doing the following in all possible ways. Pick (0, ) € S, x St
and single out X chains from o(Cy), ..., 0(Cg,,) as being special. Order them
as above using @, and begin defining an isotone function one chain at a time,
allowing the full three choices (if necessary) in any special chain, while using the

indicator (if necessary) to allow at most two choices in any nonspecial chain.
Thus it follows that

E, -
IFD(n)l < IS,] - lS,"I( K) 2Fn K3

<n! n!(2‘/; Innlog ny(i:) 2Enzlog B/2)K ¢ 2En(l +(clogn)/n)

using the bound provided by Lemma 3.
We now show that we may assume that the X special chains always include

all chains of length >2r (recall 7 = +/ni In n). There are approximately (, ', )
chains of length > 27, which is approximately equal to
E, exp( - % (n(in n)2)> =E, 'Tlnn
(see [1, p. 170, Theorem 1]) which, for large n, is negligible compared to the
bound for K.
The main argument is best expressed in probabilistic terminology and we
will use the following notation. If X is a simple space, 4, B events on X and F
a random variable on X, then P(4) denotes the probability of 4, P(4}B) the con-
ditional probability of A4 given B, and E(F) the expectation of F. Definitions and
properties of all terms can be found in Feller [1}. Our sample space shall be
S, xSy - Pick an isotone Boolean function and an element R € 22,
the random variable Uf. » defined as follows. Us (o, 8)) = 1 if either:
Gase (). () fR) = 1; (b) knowing the values of f on all the earlier chains
of the sequence obtained from by the action of (o, 6) still leaves R and T
unpredetermined, where R O T and T belongs to the same chain 0(C;) (of length
<2r) as R; (¢) £(T) = 1; (d) the number of bound 1’ in 6™'(R) to the right of
ind(7, R, 0) is at least half the total number of bound I's in 6™ (R).

Consider
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Case (ii). (a) f(R) = 0; (b) knowing the values of f o‘n all the earlier chains
of the sequence obtained from §2 by the action of (0, 0) still l?aves Rand T X
unpredetermined, where R C T and T belongs to the same chaxr'\ o(C) .(of lengt
<2r) as R; (c) f(T) = 0; (d) the number of bound 1’s to.the_rllght of ind(R, T, o)
in ¢~1(T) is less than half the total number of bound 1’s in 6™ (7). We now

e the random variable U, = Z, ,n U, p-
el It follows from the deﬁfnitionlz 02f Uﬂ; that U (0, 8)) is the numbe:r of
chains on which Procedure I would force us to define f incorrectly assum:flg w? i}
had defined f correctly on all preceding chains, i.e., it tells us how man)" special
chains (chains on which we should allow three choices) we would need if we
wanted to use the ordering induced by (o, 8) in order to be able ‘to construct f
by using Procedure II. Note that we are already counting all chains of length
> 27 as special for reasons discussed earlier. What we inten.d to show is that for
any isotone function f E(U) < cE,/n. This last fact irflp'he.s that there e)ustsf
(07, 0) €S, x Sy, such that U (o, 0) < cE, /n (this is just the metl'lod o.ll
averaging dressed up a little). But this means that every monotone functxofl wi
be constructed at least once by applying Procedure II (allowing cE, /n special
chains) to every element of S,, x Sy, , and our result will have bee.n proven.

We shall prove later that E(U,) <cE,/n, but at this point it might be helpful.
if we gave a short sketch of how we actually prove that E(U A cE,[n. To begin
with, E(Up) = ZpeanE(Us g)- Note also that 1f RI1>[nf2} + 7 or IR < y
{n/2} —r, then E(Uf, g) = 0, since R is in a chain of lengtl.l >2r, and w'e consider
all such chains to be special. We now subdivide the remaining elements into t'wo
classes, those which are mapped to 1 and those mapped to O by f. More precisely,

o Ay = {RE€2{n2} -7<IRI<[n/2] + rand fR) = 1},

Ao = {RE€2%{n2} - 7<IRI< [1/2] + 7 and f(R) = O}.

Obviously,
EUup= X

EU p)+ X EUg)
RE€A;, R

EAf.O

We will show in detail that Zpea 1 E(U,, r) is bounded by cE, /n for some con-

stant ¢. The proof that Tpea .. o E(U, g) is bounded by a factor of the same
form is similar and will be omitted. Now observe that (U z) = P(U; = 1). j

To calculate AU, r =1) for R € A 4, it is necessary to p.amtlon A, into sets;
Loy -« sLipp) 455 Where Ly = {R € Ay IR covers exactly i elements of A, ].
Thus, for example, if R € L, then E(U, z) = 0. Consequently,

[n/2]+7 _
Z E(uf,R) = Z Z P(uf.R =1).
ReAs, i=1  REL;
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Hence it is sufficient to know the various P(Uf' r=1forREL,
Basically what we do is consider three cases:

101n n—-1 nja {nj2]+r
Re U L, Re U L, ad Re€
q=1 q=10Inn q=n/4+1

(for n sufficiently large). Lemma 9 shows that the number of elements in the
first two cases cannot exceed cE,, where c is a constant. Obviously, the number
of elements in the third case cannot exceed 27. Below, we present a short
heuristic outline of how each case is dealt with. We begin with the second case
since it is the easiest.

IfRe U;I=4loln nLq and ULR = 1, then the majority of bound ones are
to the right of the indicator point (i.c., ind(R, S, o) where R covers ). Suppose
now that by the gap of (R, ) we mean the positions in 0™ (R) between
ind(R, S, ¢) and the first free 1 to the right of ind(R, S, o) if it exists; otherwise
the gap of (R, 0) is simply all of the positions of 6™ 1(R) to the right of
ind(R, S, 0). Since we have many bound 1’s to the right of ind(R, S, 0), either
there are at least #2/100 bound 17 in the gap, or somewhere on the order of n/2
bound 1’s to the right of the gap. In the first case, we show that the probability
J being unpredetermined on R and R covering an element of A, is bounded by
c/n (c a constant), since it is fairly likely some of the elements of A ; which
are covered by R will be mapped by o into chains of the same length as R, and
in order for f to be unpredetermined on R all such elements must appear later in
the ordering which is also not very probable. The second case is handled by
showing that the probability that no element of A, covered by R is mapped
into a shorter chain by o decreases exponentially in g, and again we get a factor
of the form ¢/n. Putting this all together, we see that PU,p =1)<c/n (c
some constant), and the contribution of all R’s for which R € UZ/=410 nnlqis
bounded by cE,,/n (recall our convention).

The case where R € U;g';' n—1 L, is handled similarly, although since ¢
is small we must carefully analyze what happens when we have on the order of

nf2 bound 1's to the right of the gap. However, our analysis shows that we may
safely use ¢/n an as upper bound for E(U,p).

The last case is complicated by the fact that there may be on the order of
2" such elements. Consequently, we show that for all such R, E(U, ) is
bounded by ¢/n3/2. The idea here is that since R covers so many elements on
which f is 1, it becomes increasingly unlikely that R will be unpredetermined.

We realize that the above is very sketchy, but its only purpose is to help
guide the reader through the technical maze ahead, In the next section, we pre-
sent some lemmas which we need to prove the main result. The reader may wish
to glance briefly over them. We return to the main argument later and derive an
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explicit formula for E(Ug, r)- The lemmas which we prove are necessary in order
to derive bounds for this formula.

Some lemmas.

LemMa 1.

R < (["/72]) . ({n/21 + f) _

ProoF. TEJ(R, p) for some 0 < p < 7 iff there exists U € G|, /5], Such
that UC R C T. There exist (%/2]) UsinG(,3)—y,n such that U CR. Each such

U is contained in ( 1"/ 3}*”) elements of Gy, 2] 0+ O
The following lemma is easily proved and hence its proof is omitted.

LEMMA 2. Let H C Gyy)s),q be nonempty, and let J C H be a set of
maximal cardinality having the following property:

(#) R, S € J, R + S imply that R ¢ J(S). Then 171> (HIIJR)}. o

Lemma 3. J, < nlJR)I < gVnInnlogn ywhore R is any element of
Gnj21.m°

ProoF. We will prove the lemma by constructing a family of disjoint sets
R, ..., R, withA< n|J(R)| and such that each R} has property () of
Lemma 2.

Using Lemma 2, we let RY be a set of cardinality {E,\J(R)I} having
property (»). Inductively, we let R} C B - U1 R? be a set of cardinality
(&, - E";} IRFDIV(R)} having property (»). It is straightforward to see that

< s > En 'EF‘
2 RN i &

where F = 1 = (1/[JR)).
Consequently, we have the following inequalities:

En>El IRM > 7R (1—F)“E"<l_(l'|J(R)l> )

=E,-E, exp{-— IT’(ERT} .

Hence, if k¥ = nlJ(R)I, E;‘;.l IR} = E,. Actually, it is easy to see that the
family is constructed before n In 2| J(R)| steps are taken. A simple estimate
shows that n|J(R) < 2VAlanlesn g

The following lemmas are intended to provide bounds for binomial co-
efficients and combinations of binomial coefficients. The proof of Lemma 4 is
straightforward.
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LeEMMA 4. Let A, B, C be nonnegative integers. Then

A —
c
Si—a) < (1 -ﬁ) <eBCA, o
@)

The following lemma can be proven using the ideas in Feller [1, pp. 168—

170], and will be useful for estimating binomial coefficients (sce also [1, Problem
14, p. 181]).

LEMMA 5. Let k be such that both k and n — k go to = as n goes to .
Then

© (’;:) ~Vaia=n 2T,

where

. 281: 2j n
Q) =].>=:1 (_n') 72 -1
with 8, = |k — %nl.

(Note. If say Inn <k <n —In n, () converges uniformly to the right-
hand side of (#) above throughout the entire range of values of k) O
As consequences of Lemma 5, we have the following two lemmas.

LEMMA 6. If k is such that lim,_, ,, (k — ¥%n)*/n® = O then

n\ 2 n (_Z<_l)’)~ n -\ 2(, _1\?
(k) \/1;2 exp{~,\k~ 2" [n/2]) °"P('E("'5))' o

Note that Lemma 6 is 2 form of [1, Theorem 1, p. 170}. The next lemma
gives us an upper bourid of the same form for all binomial coefficients.

LeEMMA 7. For n sufficiently large and for0 <k <n,

n 2 2
(k) <E, exp(— r_t(k - %n) )(l +¢€)

where ¢ — 0 as n —> oo,

(Note. We can replace E,, by (\/2]anX2").)
PrOOF. By symmetry we need only consider 0 <k <n/2. Ifk<Inn,

6)<(3)" <e.on(He- oo

for sufficiently large n and for any € > 0.

then
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Now —f(k) of Lemma 5 can be written as —2(k — %n)?/n — g(k), where

= (28 k) L A
s =2, ( n) Fai-1°
with 8, = k — %n. Note that all the terms of g(k) are positive.
Now if In n < k < n/2, then

n .__!l_—- 2ne—f(k)’
(k) <A Fely 2nk(n — k)

for some ¢; > 0, where ¢, —> 0 as n —> o2,
But

2/, 1.\2
M _one TR (1 + e ex (—-—(k—-n))
U +ed/oatn =) © (1 +e)E, exp=o\k 72
2
R (3 AL
€V 2mk(n - k)

If in addition we have that k < n/2 —n°/10, 8(*) < ¢™4/3" << 1/n?, s0 the
lemma is true in this case also. We note that in the remaining case n/2 — n®/1°
< k < nJ2, the factor /n2J4k(n — k) is bounded by something of the form
(1 + €,), where €5 — 0 as n —> o regardless of the value of e %K) 50 again
the lemma is true. O

REMARK. In using Lemma 7, we will often omit the factor of (1 + €)
and just use the right-hand side as a bound for the left-hand side utilizing im-
plicitly the convention introduced earlier. The reader may have observed' that
some of the preceding results can be sharpened and that in some cases n is suf-
ficiently large for small values of n (e.g., 10). However, since such refinements
will not improve our main result we have chosen to omit them.

LEMMA 8. The number of distinct Boolean (s + 2t)-tuples which can be
formed from s free O’s and 1’s (s > Q) and ¢t bound pairs of a 1 and a 0 of the
formX YX Y X+ XY X, where each X is either empty or some set of bound
1-0°s, and each Y is either a free O or a free 1 (all the free O’s are to the left of
all the free 1’s of course) is

s+2t\_s+2t \__s+1 (s+2t).
(s+t s+t+1) s+e+1\ s+t
PrROOF. Each such element as described above belongs to a chain (of

Q. ,,) of 25¥2% whose largest member has cardinality s + £. The number of
s . I3
such chains is the number of chains of &, ,, which stop at level s + # and is
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s+ 2t _( s+2t )
(s+t s+t+1/°
A proof of the following lemma can be found in [4].

LemMA 9. 37_ IL| < ((0/2}/([n/2] -1 - P))E,.

The main argument. The following additional notation will make for in-
creased clarity in the exposition.

Notation. For R € L, let b(R) denote the elements of A, which are
covered by R. For 0 €S, Iet o(C), denote the chain o(C;) which contains R.
For a given (0, 0) €S, x S;,,» let ord(a(C;)) denote the order of a(C;) as induced
by o and 0, i.e., ord(c(C,)) is equal to one more than the number of chains con-
sidered before 0(C;) using Procedure II with (o, 0). Finally, for any chain C in
2%, let len(C) denote the length of C.

Fix a particular element R of some L, (g > 1) so as to avoid additional
subscripts, and consider the following events defined on our sample space S, x
Sy n:

A, is the event that o(C), N b(R) # &, i.e., R covers an element of Ay
in its chain;

A, is the event that for all T € b(R) ~ 0(C)r > ord(a(C)r) > ord(a(C)z),
i.e., that R is unpredetermined with respect to the ordering induced by (o, 6);

Aj is the event that there exists an element T in 0(C)g covered by R, and
the number of bound 1’s in 0~!(R) to the right of ind(7, R, o) is at least half
the total number of bound 1’s in ¢"}(R);

A, is the event that len(o(C)g) < 27. Clearly,
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Plyp =1)=PA4, N4, N4, N 4,).

It is necessary to subdivide the events further in order to be able effectively
to compute probabilities. Let B, (k = 0) be the event that len(a(C)g) = k.
Let C, (A > 0) be the event that: (a) there exists an element T in a(C)p covered
by R; (b) either there is only one free 1 in o~ 1(R) and X bound 1’s to the right
of ind(7, R, 0), or there are at least two free 1’s in o !(R) and A bound 1%
between ind(7, R, ¢) and the next free 1 to the right of ind(7, R, ¢)." Finally,
let D, (d > 0) be the event that there exists an element T in 0(C)g covered by
R and d bound 1’s to the right of ind(7, R, 9).

The following observations are very important in the sequel. The number
of free 1's in ¢~ 1(R) is equal to R| — %n + Y¥len(o(C)z), the number of free 0’s
in 6"1(R) is equal to ¥len(0(C)g) + %n — IR, and the number of bound 1’s in
0~ 1(R) is equal to the number of bound 0’s in 0~!(R), which in tum is equal to
¥%(n —len(o(C)g)). It now follows that
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PA, NA, N A3 NAY)

2T (n—-k)/2

d
= 3 P4, N4, NC,NDy N By)
(1)  k=p(R.n) d=1/4(n-k) A=0

27 (n—k)/2

d
- a /; Y ;o P(4, N A,[C, N Dy 0 B )PDy N C,1B,)P(By)
k=p(R,n) d=1/[4(n— =

where p(R, n) = max{2 + n - 2R}, 2IR| - n}. The lower bound for & in the
preceding summation is derived from the fact that the number of free 1’s in
o~ 1(R) must be at least one and the number of free 0’s in ¢~ (R) is nonnegative.
We next estimate the magnitudes of the factors in (1).

Proceeding as in Lemma 8, it is easy to see that

QK DI+ DN )

w (2

From Lemma 6, it follows that

B <@+ 251D e (@I - 1),

where € — 0 as n — <o, Note that the exponential factor is <1.

The next factor which we consider is P(4; N A,IC, N Dy N By). If we
know that C, N D, N By has occurred, then ¢™'(R) must look like (X, 1,
bound 1-0 pairs, ¥) where X consists of %k + %n — |R] free s intermixed with
%(n — k) — d bound 1-0 pairs, while Y simply consists of {R| — %n + %k — 1 free
1’s with d — A bound 1-0 pairs intermixed. It is necessary to determine the num-
ber of elements S covered by R such that ord(a(C)g) = ord(o(C)z). Let H be
the set {j € nfthere is a 1 in the jth position of 6™ '(R)}. Forj € H, let Z, €
22 be such that 0™"(Z)) is the same as o 1(R) except that there is a 0 in the
jth position of o“(Z,). Clearly, the set of the Z;'s is exactly the set of elements
covered by R. If j <ind(7, R, 0), len(a(C)z i) = len(a(C)z) + 2, and consequent-
ly ord(o(C)z _,) £ ord(o(C)g). Ifj > ind(T, R, 0) + 27, len(o(C)z i) = len(0(C)g)
~ 2, and consequently ord(o(C)Zl) < ord(o(C)g). Of course, Z,,4(r.R,0) = T.
Finally, we note that for ind(7, R, ¢) <j <ind(T, R, o) + 2], len(o(C)zl) =
len(o(C)g) and the ordering depends on 6. It is here that we use the partition
J*={J..., J,n} defined earlier. Namely, for ind(7, R, 0) <J,,j, &
ind(T, R, o) + 2, o(C)zi v o((:")z,2 and o(C); must belong to different blocks,
and consequently Sy, acts as if it were the symmetric permutation group of the
set X = {o(C)g} V {o(C)z,Iind(T, R, 0) <j < ind(T, R, 0)} in the sense that if
we look at the orderings induced by Sy, on X we will see that any permutation
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of the elements of X is just as frequent as any other. Now for A, N4, to

occur, T must belong to Af, 1> 1O Z, ¢ Af' y for j > ind(T, R, o) + 2X or for

those j, ind(7, R, 0) <j <ind(7, R, 0) + 2, such that ord(o(C)zl) < ord(e(C)g)-
Consider the event F .+, which is that there are exactly q' /s, ind(7, R, 0)

<Jj<ind(T, R, 0) + 2], such that Z; €A, . It follows that

P4, N 4,IC, ND, N B,)

min g—x.x}
- X P4, 0 A4,IC\ N Dy N By NF)P(F,IC, N D, N B,).
Consider the factor (4, N A4ICNDy;NB. N Fp). If (0,0)€Cy,NnDy N
By N Fy, then there exist ¢’ s, {j,, . . . yJqg'}s nd(T, R, 0) <j < ind(T, R, 0)
+ g, such that Z; € A; ;. By symmetry we may assume that we are only con-

sidering those pairs (g, ), such that for a fixed set {ry,..., T} CHR)N
Af' 1 Z,i nd(T,R,0)+1 = T,1<Ki<q', Actually, we may concentrate our atten-
tion only on the pairs for which 0~!(R) is some fixed element. In this case S
can be viewed rather as S| !

Pick such a pair (o, 8). In order for A, to occur (recall F,. has occurred),
of the remaining |R| - ¢’ elements of b(R) whose images under ;“ have not yet
been determined, o must map exactly one of the remaining g — ¢’ elements of
RN Ay —{Tys..., T4} into the same chain as R and map no additional
element of (R} N Ap, into a chain of length k. Thus 4, will occur only in the
proportion (g - ¢")/(IR| = X). In order for A, to occur simultaneously, it is
necessary and sufficient that the remaining ¢ — ¢’ — 1 elements of bR N Apy —
{Ty,..., Ty's Tyryq} (where T,y is in the same chain as R) be mapped i'nto
the Z7s for j <ind(T, R, 0) = 3n/2 —k/2 — 2d — |R|. There are Yn-k)-d
such Zs and ord(a(C’)zind(T‘R'o)H) > ord(o(C)g) for 1 <i<q'.
The first condition only affects the first component of (0, 6) and gives a
factor of
((n—k)/,z—d
q—q -1
(Ri-2-1y

The second condition only affects the second component of (o, 6) and gives a
factor of 1/(g" + 1). Thus we see that

. (TR)2-d

KA, NA4,IC, ND,NB, NF,)=—1_4=9 ° a=qg-1
KT g+ RN (Ri=A-1)
. -9~
It is not hard to see, reasoning as above, that
()

FEI6, 00, 0 = () o8
q

q
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(Note. Thisis the hypergeometric distribution, see [1, p. 41].) Thus we know
the value of P(4, NA,IC, N D,y N By).

We now derive an expréssion for P(D; N Cy1B;). We proceed much the
same way as above. We first observe that P(D, N C,1B,) = P(C\ 1B, N Dy -
e lﬁI’:J)v-v P(D,IB,) = N\N, /N3, where N is the number of chains of: leng.th
k, N, is the number of ways of intermixing %(n ~ k) — d bound l-(-) pairs with
%k + %n — IR| free O’s, and N, is the number of ways of intermixing d bound
1-0 pairs with |R| - %n + %k — 1 free 1’s. We know N from the calculation of
P(B,), while N; and N, can be calculated by Lemma 8.

Thus
Yi(n + k)~ IRl + 1 (3n/2-%k—lRl—-2d)
(n—iRl—d+1) n—iR|—-d
P(D4IBy) =

20k + 1) n )
2+k+ 2(((n + K)[2)

(IRI—Va(n—k)+2d—l).

(R| = %(n —k))
) IRI—t%(n —K) +d—1

(IRP¥%(n — k) + d)
Again with the help of Lemma 8, we see that

- —%n-k +2d-N -2
1 (IRl - %(n - k)~ 1) (IRI %(n - )
7\+l(z)‘)(lRl—Vz(n-k)+(d—)\)—l) RI-%n—k) + (d—-A)—2

(K| — %(n — k) lRl-Vz(n-—k)+2d—l)
(IRI—‘/:((n—k)+d))(IRI-‘A(n—k)+d—1

(unless [R] = %(n — k) + 1, when the numerator =1 whend =, 0 otherwise).
From (1) and the above, we get

) EUpp) =22 X2 010,252,05:
k d A q
where the indices k, d, )\, ¢’ have the same ranges as above and
Ql =P(A1|CA nDd an')’ Qz = l/(q' + 1)’
Q; = P(4,IC, "D, "B, N Fq- NANGQG,, Q4= P(Fq'ICA ND,; N B, NA,),

and

P(C}JBk n Dd) =

We can simplify (2) to get

1 ('A(n—k)—((zd—k)+ l) ()\'+l)(%(n—l’c)—d)
pIPIN?;
; FEEY SAa+1

q+1°* g—q —1
v Mh(m—k)—(d—A)+1
(Fh o (RmTgET)

(Where we only sum for those k, A, d such that g < ¥((n - k) —(d — N .+ 1)).
The terms inside Eqv are those of a hypergeometric series, and hence their sum

does not exceed 1.
Lemma 4 implies that E(U, g) < Z; Z, Z) O, where
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Q= (Q/Q + 1)) exp(—q(IRI - %(n — k) + @ - ) + 1)/IRDPC, N D, N By).
First consider those R for which 10 In n < g <n/4. Then

E(uf,R)<ZkIZ > e+yXy ¥ e

d A>nj100 k d A<nj100

If A > n/100, then Q < cP(C) N D, N B,)/n (where c is a constant on the
order of 100) and 2, X, 2y, 100 @ S ¢/n. If A <1n/100, then IR| - (n — k)/2
+ (@ -2 + 1> [R|/10 for n sufficiently large since d > (n — k)/4 and k < 2r.
Consequently, the exponential term is not greater than 1/n, and as before

2 Za Bi<nroo @ < 1/n. Thus E(Us, ) <c/n (tecall the convention that ¢ is
a dummy constant). From Lemma 9 it follows that the number of R’s for which

q is in the range we are considering is less than 10E, (for n sufficiently large).
Hence

nl/4 c
i=10Ilnn REL;

Thus it only remains for us to deal with the cases where q<10Innandq>
nf4,

In the first case, the summand Z, Z, Z, ,, , /100 @ is not greater than c/n
for the same reasons as above. To calculate the contribution of the terms for
A <n/100 we return to (2). We rewrite it slightly as follows:

P>

We claim that there exists a constant 7, such that if q=r403/@ + <1
(for IR, i.e., sufficiently large). Once we prove this, our bound of ¢/n will be
obtained as follows. For q > r, the sum over q' is <1, as is the sum of Qs over
k, d, X. Thus 1/IR] would be our bound. But 1/|R| < ¢/n for sufficiently large
n, since [n/2] -7 <|RI < [n/2] +7. For q <r, the sum over q'is <r, and thus
the factor is bounded by r/IR|. Again using Lemma 9, we can show that

q
Qs 2, == 050,.
A<n/100 SEq:"q +1 374

10inn

[+
Y X EUgp) < E,.
i=1 REL,

Now we prove the existence of 7. By Lemma 4, 0; <exp(-h(g —q' - 1)) for
some constant 4 > 0 and all [R| sufficiently large. It is easy to see that for any
h > 0, there exists an r > 1 such that for all 2 and b,suchthata>randa >
b>1,(a/b) exp(-h(a - b)) < 1.

In the remaining case (g > n/4), our strategy is to show that E(Uf' rR)<

¢/n*/2, since we can no longer use Lemma 9 to bound the number of R’s. For




388 D. KLEITMAN AND G. MARKOWSKY
A< n/100, Z << 1/n3/? where
Z= exp(-q(lRI -%(n -BN+d-)+ 1)/IRI),

and we can proceed as before. For A > n/100, (1/QA + 1))Z < c/n? for k, \, d
such that |R| — (1 = k)/2 + (d — X) + 1 > (3 In n)/2, since ¢/IR| > 1/3 (for n

sufficiently large).
Thus it is only necessary to consider the case where A 2 n/100, and |R| -

(n-k)/2 + (d =N < (3 In n)/2. To make the following discussion more readable
we introduce the new variables & = [R| = %(n — k) > max{1, 2|R| — n} = 75 and
B = (d — ) > 0. Thus in our summation we need only consider terms for which
a+ 8 < (3 In n)/2. Hence we are considering
d
%
(such that yp<a<(3 In n)/2)

P(D,41By) - P(By) < ;‘;'E > P(dek)KBk)z}‘: PG\IDy N By)
k d

e e W

e B3P, 1D, N By).

d A=d~(3Inn)/2+a

<Z ¥ T AD,IB)PB,).
k d

We consider the expressions derived earlier for P(D,|B,) and P(B,) with & and g
substituted where appropriate. .

(&) and (%5241 ), which appear in the sum above, can both be estimated
(to within a multiplicative constant) by Lemma 6. We now assume that [R| <
n/2 (we will shortly discuss what changes need to be made for the case [R| >

n/2). It follows from Lemma 7 that
(n-a—zd) < c
n—|Rl-d/ “f(n-a)-2d

et
-exp(—m(2n+2a R .

Note that for |R| < n/2, n —a—2d > 1 for all possible d and a. It follows from
the above and some straightforward analysis that the sum in question is bounded

by

n—a—2d

2 (31nn)/2
M = (c In n/n*) p>
a=7R

(n-2Rl+a+1)

)3l (- RI+ 1 -d)(n —a—2d)' )71

d=(IR|-a)[2

NUMBER OF ISOTONE BOOLEAN FUNCTIONS. o 389

However, the interior sum in M is bounded by [ I(fIZITfa)/2 f@dt + f(IR] - a),
where () = (n — IRl + 1 — £) \/n — a = 28)"}. Integration shows that M can be
bounded by e(ln n)?(2r + (3 In n)/2 + 1)%/n?, which is bounded by ¢/n3/2.

Essentially the same argument works for the case (n/2) + (3/4) In n > [R]
> (n/2), except that a little more care must be taken to evaluate the bounds. The
exponential term in W is bounded by a constant again since

2/ -1 \2 .9 (nn)?
n(IRI 2n) <8Mn ,

which goes to 0 as n —» oo, The rest of the estimating procedure is exactly the
same except for the following exception. When we are summing for a =y, =
2IR| = n 2 2, we can use the above summation procedure for all the cases except
d = |R| — a, since in that case we will get 0 in the denominator of the upper
bound. However, this case can easily be evaluated directly from {2) and it only
contributes a factor of (c In n)/n%. Again we conclude that E(lUyp) < c/n32,
Actually, we can do better, since it is easy to show that we actually get E(U,. Rr)
<c(ln n)*/n? for all such R that we have just been considering

Thus the proof of the theorem is completed.

REMARK. We will now show that we have produced the best possible bound
(up to a constant multiple) for Procedure II, by showing that there exist isotone
functiqns f for which E(uf) 2 dE, /n for some constant d. Suppose |R] is ap-
proximately [n/2] and R € L,. It is easy to show by direct evaluation of )
that E(Uf' R) = afIR| where a4 is on the order of %. Thus we need only show that
there exist monotone functions f for which |L 1| is on the order of E,,, since then
it would follow that E(Ul;) > dD, /n. Knuth shows [5] by the use of Hamming
codes that there exist arbitrarily large odd integers , for which there exists a
subset I of Gin J21,n Of size at least E, /(n + 1) such that for any S, TE I,
IS UTI> [#/2] + 1. Let fbe a function such that f@)=1if |1Z| > [n/2] or
Z €1, and f(Z) = 0 otherwise. Then L, = {Y € Ginj21+1,41Y O S for some
SEI}. Tt is easy to see that |L, |~ %E,,, and thus E(Uy) > (@/n)E,.
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