in Fanout-Free Circuits

bwsky

t, in a simple manner, a test combinational circuit with n gnoses) nonequivalent single over the upper bound in [1, r of primary input gates) and of 2n for the least number of nequivalent single faults.

ng single faults, fanout-free , test set.

ION

talking about the standard puld consult [1], [2], or [3] if

ingle faults if given any two means that they differ on n which the two faults differ. Detter than to determine the orithm we present produces n + 1 where n is the number ional circuit. This is an im[1], [3], and [5].

s is known for fanout-free 01]), we will not bother to cular faults. Such a relationve and can be worked out by

нтни

Lit, we use $T^*(T^2)$ to denote cuit has the value 1(0). The assume that we know what ok like on each of the input a single fault diagnostic test out the algorithm in detail p gate G.

ne 25, 1979. puter Sciences, IBM T. J. Watson should produce the function $f = f_1 \wedge \cdots \wedge f_k \neq 0$, 1. One additional notational convention is that for $t_i \in T_i$ we use (t_1, \dots, t_k) to denote the test that consists of simultaneously applying t_i to the inputs feeding l_i for all i.

With everything as described above, let u_i be an arbitrary member of T_i^u and define

$$T^{u} = \{(t, u_{2}, \dots, u_{k}) | t \in T_{1}^{u}\} \cup \dots$$

$$\cup \{(u_{1}, \dots, u_{k-1}, t) | t \in T_{k}^{u}\}$$

$$T^{z} = \{(t, u_{2}, \dots, u_{k}) | t \in T_{1}^{z}\} \cup \dots$$

$$\cup \{(u_{1}, \dots, u_{k-1}, t) | t \in T_{k}^{z}\}$$

and

$$T = T^u \cup T^z$$
.

Note that T is very close to the set produced by Procedure 2 in [5]. We now have the following theorem.

Theorem: T is a single fault diagnosing test set for the circuit ending at G. $|T^u| = \sum_{i=1}^k |T^u_i| - k + 1$ and $|T^z| = \sum_{i=1}^k |T^z_i|$. Thus, $|T| = \sum_{i=1}^k |T_i| - k + 1$.

Proof: If a single fault or no fault occurs in the circuit, then the output of G is one of the functions 0, 1,

$$g_{11} \wedge f_2 \wedge \cdots \wedge f_k,$$

$$g_{12} \wedge f_2 \cdots \wedge f_k, \cdots, g_{1m_1} \wedge f_2 \wedge \cdots \wedge f_k,$$

$$f_1 \wedge g_{21} \wedge f_3 \wedge \cdots \wedge f_k, \cdots, f_1 \wedge g_{2m_2} \wedge f_3 \cdots \wedge f_k, \cdots,$$

$$f_1 \wedge f_2 \wedge \cdots \wedge f_{k-1} \wedge g_{km_k}, f_1 \wedge \cdots \wedge f_k$$

where g_{ip} $(p = 1, \dots, m_i)$ are the nonequivalent nonzero functions which can occur as a result of a single fault in the circuit having l_i as an output line (see [2], [4]).

Since each $f_1 \wedge \cdots \wedge g_{ip} \wedge \cdots \wedge f_k$ is 0 on any element of the form $(u_1, \dots, u_{r-1}, t, u_{r+1}, \dots, u_k)$ with $r \neq i$ and $t \in T_r^2$ and 1 on some element of the form $(u_1, \dots, u_{i-1}, t, u_{i+1}, \dots, u_k)$ with $t \in T_i$ (since T_i distinguishes g_{ij} from 0), T clearly distinguishes between 0, 1 and the other faults. Since $T^2 \neq \emptyset \neq T^u$, T diagnoses the faults 0, 1.

We now show that if θ , γ are two distinct functions in the list given at the start of the proof such that θ , $\gamma \neq 0$, 1, then some element of T causes them to assume different values. There are two cases to consider.

Case 1: θ and γ differ only in the *i*th conjunct. Here it is clear that T distinguishes between θ and γ since some $t \in T_i$ distinguishes between the *i*th conjunct of θ and γ , whence $(u_1, \dots, u_{i-1}, t, \dots, u_k)$ distinguishes between θ and γ . In particular, this shows that T detects all single faults (it actually detects all multiple faults; see [2], [4]).

Case 2: θ and γ differ in the *i*th and *j*th conjuncts with $i \neq j$. Thus, we may assume that $\theta = f_1 \wedge \cdots \wedge g_{ip} \wedge f_{i+1} \wedge \cdots \wedge f_k$ and $\gamma = f_1 \wedge \cdots \wedge g_{jq} \wedge f_{j+1} \wedge \cdots \wedge f_k$. Note that θ is 0 on $\dots, u_k) | t \in T_i^z$

 $|\cdot\cdot|, u_k| | t \in T_i^z$.

evious sentence is all of T^z , between θ and γ or θ and re done. In the second, we

ally 0 on T^z , then $g_{ip} \equiv 0$ $f_i, g_{ip} \equiv 0$ on T_i^z and T_i t l_i , there exist $t_1, t_2 \in T_i^u$ Let $t_1^* = (u_1, \dots, u_{i-1}, t_1, u_{i+1}, \dots, u_k)$. If $g_{jq}(u_j) = 0$, j = 1, then $\theta(t_2^*) = 0$ while shes between θ and γ . m of the $|T_i^z|$ since all the int, while $|T^u|$ is just the the element (u_1, \dots, u_k) to create T". nal circuit with n primary est set containing exactly

action on n. For n = 1 or 2, the case of the AND gate bse T_i so that $|T_i| = n_i + 1$ its feeding the line l_i . By the $1 = \left(\sum_{i=1}^{k} n_i\right) + 1 = n + 1.$ ssentially identical.

ge some stimulating discusgnostic test sets and one of

cture and its relation to fault diag-Urbana, Rep. R-467, May 1970. in combinational logic network," 506, 1971.

equiring a minimal or near-minimal C-20, pp. 1506-1513, 1971.

fault test set is smaller than any national circuit," IBM T. J. Watson p. RC-6483, Apr. 1977. Iltiple fault diagnosis in fanout free

Tolerant Computing (FTC-5), Paris,