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Let X be a set with n elements. The number of topologies
that can be defined on X has been determined for certain small
values of n (see [4], [6]1-[9], [12],[14], (171, and [18]).

Also, the number of topologies defined on n points has been
estimated by several authors (see [7], [8], and [11]).

In this paper, we shall present some formulas relating:

(i) the number of T,-topologies on n points with the number of
topologies on n points; (ii) the number of connected T,-topologies
on n points with the number of connected topologies on n points;
(iii) the number of isomorphism classes of To-topologies on n points
with the number of isomorphism classes of connected T,-topologies on
n points; (iv) the number of isomorphism classes of topologies on n

points with the number of isomorphism classes of connected topologies
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on n points; (v) the number of To-topologies on n points
with the number of connected T,-topologies on n points; and
(vi) the number of topologies on n points with the number of
connected topologies on n points. We accomplish this by
considering an equivalent problem. Namely, we shall use the
correspondence between To-topologies and posets on n points
and the correspondence between topologies and quasi-ordered

sets on n points, respectively (seev[I] and [2]). The reader
is refer to [2] and [13] for notation and terminology concerning

ordered sets, and combinatorics, respectively.

Let Q(X) be the set of all quasi-orders that can be
defined on X; let P(X) be the set of all partial orders that
can be defined on X. Let Q be an element of Q(X) and let

X, y € Q. We define x Ty iff xéy and y ¢ x.
LEMMA 1. Z is an equivalence relation.
Let Q' denote the quotient-set Q/Z.

LEMMA 2. Let Q be an element of Q(X). Then Q' is a

partially ordered set in the obvious way: Let x*, y* € Q', then

x* 2 y* iff for some x € x*, y € y*, we have, x 2 y.

L
=
~
i
]

Proof. (i) x* A x* for all x* € Q'.

(ii) x* 2 y*, y* 2 x* for some x*, y* € Q => there
exist x, z € x*, Yy, WE y* such that x 3y, W LR
But x, zex* = z¥x and y,wey" =Yy 3y =
ydwdzdx = y d x (since Q€Q(X) = xey* =
x* = y* (since equivalence classes are equal if they have
a common member).

(1ii) x* dy*, y*¥r = there exist X € x*, Y €Y%,

*
2 e z* such that x2y, y3?z. Thus x Yz = x*=z*.

A quasi-ordered set Q is said to be connected if for any
x, y € Q there exists a sequence Q,, ... qy jn Q such that
Xx=4qy, Y= q and for each i =1, ..., k- 1 either q; ¢ Q41
or q; 2 9,1 Let Q%(X) he the set of all connected quasi-orders

that can be defined on X; let PS(X) be the set of all connected

partial orders that can be defined on X.
A ]
LEMMA 3. Let Q€ Q(X). Then Qe QS(X) iff Q e PS(X).

Let s(n, m) and S(n, m) denote the Stirling numbers of the
first and second kinds respectively (see. [13]). Let P be a partial
order defined on m distinct elements, @y, «--» a; and let I(P)
be the number of partial orders defined on a3, ..., 8, which are’

isomorphic to P.
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LEMMA 4. (i) Let P be a partially ordered set defined : Let Q(n) be the number of quasi-orders on X; let Q%(n)
on m distinct elements, a1, eevy an. Then there exist be the number of connected quasi-orders on X; let P(n) be the
S(n, m)I(P) quasi-ordered sets 0 defined on the n distinct number of partial orders on X; and let PS(n) be the number of
elements, b, ..., bn such that Q' is isomorphic to P (in symbols, Q' = P). connected partial orders on X. Let T(X) be the set of all

(ii) Let P be a connected partially ordered set defined topologies that can be defined on X; let TC(X) be the set of
on m distinct elements, a5, ..., ap. Then there exist all connected topologies that can be defined on X; let Ty (X} be
exactly S(n, m)I(P) connected quasi-ordered sets Q defined  the set of all T,-topologies that can be defined on X; and let
on the n distinct elements, by, ..., b, such that Q' s S(X) be the set of all connected To-topologies that can be defined
isomorphic to P. on X. Let |Y| denote the cardinality of a set Y. Let T(n) = [T,

Proof. (i) Q= P implies that the b; are partitioned T¢(n) = |T°(X)|, Tol(n) = [T, and TS(n) = |TS(X)| respectively.
into m nonempty disjoint equivalence classes, and that these
equivalence classes are ordered in some way isomorphic to P.
Thus for any partition of the b; into m such equivalence el .
classes there are I(P) ways of ordering these equivalence " THEOREM 5, (i) Q(n) = zl S(n, m)P(m),
classes in a way isomorphic to P. But [13, p. 99] it is shown %}’ "
that there are S(n, m) distinct ways to partition n elements v (ii) Q%(n) = ;1 S(n, mPS(m).

=

into m nonempty disjoint sets. Thus the number of suitable "
quasi-ordered sets is S(n, m)I(P). This result holds for any Proof. (i) For each quasi-ordered set Q on n elements
partially ordered set P, Q' is isomorphic to a partially ordered set P on m elements,

(ii) From Lemma 3 it follows that if P is a connected m & n,
partially ordered set there exist S(n, m)I(P) connected (ii) For each connected quasi-ordered set Q on n elements
quasi-ordered sets Q such that Q' = P, Q' is isomorphic to a connected partially ordered set P on m

elements, m & n. The theorem now follows from Lemma 4.
”hp%‘
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REMARK 1. Theorem 5 (i) was proved by Evans, Harary, and

Lynn [9] in a similar manner but using graph-theoretic techniques.
n
COROLLARY 6. (i) P(n) = T s(n, m}Q(m),
m=1
n
(i1) PE(n) = £ s(n, mQ°(m).
m=]1

Proof. Follows from Stirling number inversion [13, p. 34].

Let Q be an element of Q(X). We define the relation £
as follows: If x, y e Q, then x & y iff there exist a5, -ees
2 € Q such that x = a, y=a and for i =2, ..., k either
2
3 a or &

The equivalence classes generated by £ are called the connected

3 a,. Clearly £ is an equivalence relation.

components of Q.

REMARK 2. The connected components of Q are themselves
connected quasi-ordered sets if considered separately. If Q is
a partially ordered set, then the connected components are also

partially ordered sets if considered separately,

Let Q(n), 6°(n), P(n), and PS(n) be the number of

isomorphism classes in Q(X), QC(X), P(X), and PC(X) respectively,
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Let f(n), T¢(n), fo(n), and fc(n) be the number of isomorphism

c .
classes in T(X), TS(X), T,(X), and T (n) respectively.

By m, we mean the set of all unordered partitions of n.

If kemn, by ki we mean the number of times i appears as

a part of k. Thus if k = 1, 2, 2 is a partition of 5, k1 =1,
n
k, = 2, k3 = k4 = kS = 0, We define k(m) = I ki‘ For the sake of

2 i=]
simplicity, we let

PC(n) + k; -1

ki ).

Qc (i ki -1
q,ig(Q(l);il ) and ‘lli-(

n

THEOREM 7, (i) P(n) = I (my),

i=l
n

(i) Q) = I (
m

n
n ¢i).
i=

1

Proof. We will only prove (i) since the proof of (ii) is
almost identical. Each partially ordered set of n elements
induces a partition of n, simply by considering the cardinalities
of the connected components of the given partially ordered set.
Generally, this is a many-to-one correspondence. Clearly, two
partially ordered sets are isomorphic iff they both have the same

number of connected components and the connected components are of
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these two partially ordered sets are isomorphic in some order.
Suppose we are given a partition k of n. We wish to show

that there are exactly

isomorphism classes of partially ordered sets whose connected
components induce k. Wi is the number of combinations (repetitions
allowed) of ki objects chosen from sc(i) objects, i. e., it is
exactly the number of different ways in which it is possible to put

a partial order structure on ki sets of i elements each. Since
partially ordered sets with different numbers of elements can not

be isomorphic, it follows that the choices of partial order structure
for the components of size i are mutually independent and hence

there are exactly

Y.

n
-1 1

i=1
isomorphism classes of partially ordered sets whose connected

components induce k. The theorem now follows immediately.
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REMARK 3. Put Py = P(n), g, = P (n), p(x) = po +opx 4+ poX +

n 2+ + n+
.4 pnx + ... p. =1, gx) = glx + gzx eee g X e e

]

The relations in Theorem 7 imply [13]

o) = (1 - 0 %101 - )82 . Q- :l(“).gn -

exp (g(x) + g(xz)/z ot gm0

exp £ g"x"/n,
Lo

; where g; = ? dgd. Differentiation of the last leads to
din
*

* *
o, = (g, * PlBny * et °n-1g1)/“‘

The Bell polynomial is defined by

nf, y, k. y, k y k
k 1 1 2 2 T\ n
- .. = L ———— (=) (=) oo (=)
Q R Y T R T T A’
g |
3 where ﬂn denotes a partition of n, usually denoted by
| k, k k )
1 12 2 vee M n' with k1 + 2k2 LN nkn = n; ki is, of course,

the number of parts of size i. Also fk = fk = (-l)k_l(k - 1)t [13].
For basic properties of the Y,, the reader is referred to (see [13],
Sections 2.8 and 4.5). Let Yn(yl, Yoo wnes yn) denote the Bell
polynomial with all fi set at unity. This particular Bell polynomial

may be interpreted as an ordered-cycle indicator (13, p. 75].
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THEOREM 8.

@ Pm =Y (), PYD), ..., PE()),

(1) P = Y (P, D), ..., PP(N)), £,

(1i1) Q(m) = Y (@°(1), (), ..., ),

(v M = Y (), 02, ..., WM, £ = Dk - DI =5k, 1.

Proof. We will only prove (i) since the proof of (iii) is
similar, and (ii) and (iv) are just the inverses of (i) and
(iii) respectively. As in the proof of Theorem 7 we note that
each partially ordered set of n elements induces a partition of
n simply by considering the cardinalities of the comnected
components of the given partially ordered set. It is easy to see

that there are
n!

k1 k2 kn
kl(l!) k2(2!) e kn(nl)

distinct ways (up to isomorphism) of distributing n distinct

elements into k(m) parts (where there are ki parts of size 1i).

On each of these k(m) parts we are free to set up any partial
ordering we wish and the resulting partial orderings on X will
all be distinct since different groups of distinct elements are

involved. Thus the theorem follows immediately.
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REMARK 4, Write pnm for the number of orderings of n
elements with m labeled, gnm for the similar variable.

Then, if

e AR AR Ay

gx, ) = T g xy'/mt,
n=1 nm
m=1(1)n

Pl 1) = I O X Y /m!
=exp ((x, ) + g(xD)/2+ ... + g(x™/n+ ... ).
p(x, y)exp g(x) = p(x)exp g(x, y),
(o, (x, ¥) + olx, Y)g'(x))o(x) = (p'(x) + p(x)g (x, ¥))o(x, y)
Py(x, ¥) = gy(x, yle(x, y).

Employing the techniques in [13, p. 135] to determine the fully

labeled case with Pn =p n- Pc(n),

nn’ Rn = &

g Pz"/nl = exp f R 2"/nt,

or

Po = Yy Ry oy R
=Y (P51, PED), ..., PO,

as in Theorem 8.
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For convenience we provide the following table. These
values were obtained by Wright {18] with the help of a computer.
The last two rows of the table below were independently

obtained by Evans, Harary, and Lynn [9] in terms of transitive

digraphs.
TABLE
n 1 2 3 4 5 6 7
pC(n) |1 1 3 10 44 238 1650
oS |1 2 6 21 94 521 3485
Py |1 2 5 16 63 318 2045
Q) |1 3 9 33 139 718 4535
ey |1 2 12 146 3060 101642 5106612
oSy {1 3 19 233 4851 158175 7724333
Py |1 3 19 219 4231 130023 6129859
am) |1 4 29 355 6942 209527 9535241

REMARK 5. It is easy to show that; (i) Pc(n) is even for all n> 1,

(ii) QS(n) and P(n) are odd for all n > 1 [14].
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We give now an example which may help to familiarize the
reader with the meaning of Theorem 8. For the sake of simplicity
we let n = 3, Using the preceding Table and Table 3 [13, p. 49],

we obtain

) P(3) = Y4(PC(1), PE(D), PO(3))

= PS(3) + 3PS(2)P°(1) + (P°(1))3

=12 + 3-2.1 + (1)3
' = 19.
(ii) PE(3) = Yz(£fP(1), £P(2), £P(3))
= £,P(3) + £,(3P(2)P(1)) * £5(P(3))° ¢ = (0D*'x - Dy
= 1-19 + (-1)(3:3:1) + 2(1)3
i =19-9+2

. = 12,

(iii) Q3) = Y3(Q°(1), 0%(2), Q°(3))
= 0°(3) + 30°(2)0°) + )’
=19 + 3-3°1 + 1
= 29,
(iv) Q°(3) = Y3(£Q(1), £Q(2), £Q(3))
= £003) + G0 + £QM)° ¢ = (0 k- 1D
= 1-29 + (-1)(3+4-1) + 2(1)°3
=29 - 12 + 2

= 19.
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We make four remarks without proof. The following remarks

give interrelation between finite topology and lattice theory

(graph theory, semigroup theory).

REMARK 6. ‘It follows from some basic results of lattice theory

is a complete lattice, (ii) T4(X)

[2); () T

and (iii) the number of nonisomorphic distributive lattice of length

n is equal to T, (n).

REMARK 7. Evans, Harary, and Lynn (9] have shown that there is

correspondence between elements of T(X) and DG(X), the

a l-to-1

set of all trasitive diagraphs that can be defined on X.

REMARK 8. Let B(n) be the semigroup of all binary relations
on a set with n elements, represented as n X n matrices over the

B = {0, 1} of order 2. In [4] it was shown;

Boolean algebra
(1) To(m = [EM]

idempotent matrices of B(n), and (ii) fo(n) = lD(n)l where D(n)

where E(n) denotes the set of all non-singular

denotes the set of all non-singular D-classes of B(n).
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is a meet-semilattice,

10.

11.
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