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ABSTRACT

We present algorithms for reconstructing solid polyhedral objects. In this chapter
we present an algorithm which discovers all objects with a given wire frame. This
algorithm, which has a number of applications to mechanical design besides being
of mathematical interest, has been implemented and has performed well on com-
plex objects.

1. INTRODUCTION

The application of computers to problems in mechanical design was first recog-
nized over 20 years ago (Sutherland, 1963). Since that time much work has been
done on the development of production systems both for the entry of a design
into a computer data base and for the use of a mechanical design data base in
design analysis and in manufacturing.

In the field of data base entry, computer drafting systems allow a designer to
interact with a display or tablet to produce drawings of objects, generally in the
classic manner of two-dimensional projections of the edges of the three-dimen-
sional object. Some systems also provide the capability of representing data in
three dimensions; for example, depth coordinates may be added to the elements
of a two-dimensional view, corresponding features in each of several views may
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be related, and isometric views may be constructed. These computer drafting
systems have been engineered to very high levels of performance and can greatly
enhance the productivity of a designer. As well as producing drawings of the
edges of objects, computer drafting systems exist which allow the description of
the surfaces of objects as smooth curves or patches splined together at their
boundaries; in general these surfaces are represented by means of a discrete mesh
superimposed on the surface.

Computer-based systems are also used in the analysis of designs and in the
manufacture and assembly of objects. For example, parts can be checked for
interference (Boyse, 1979; Wesley et al., 1980), finite element methods may be
used for analysis of, for example, heat flow (Brown, 1977), the constraints
between objects can be derived and mechanisms can be simulated (Taylor,
1976). numerically controlled machine tool tapes can be generated to allow
manufacture of a part (Woo, 1975), and robot motions to assemble parts can be
generated (Lozano-Perez & Wesley, 1979; Udupa, 1977). In general the full
automation of these applications of the design data base requires three-dimen-
sional volumetric information about an object, rather than just a description in
terms of edges and surface mesh faccts. At present the volumetric form of the
data base is considered to be rather difficult and expensive to acquire, and the
analysis data are generated in a computer-assisted manner. For example, in the
case of numerically controlled machine tools, the path of the cutter may be
entered over a drawing at a graphics terminal.

This paper presents an algorithm for automatically bridging the gap between
these two fields of computer geometry, that is, from an object described in terms
of its edges (a wire frame) to a volumetric description in terms of solid material,
empty space. and the topology of surfaces and edges. In its present form, the
algorithm is restricted to objects whose edges are straight lines and whose faces
are planar; since the algorithm is a topological algorithm, it could be adapted to
nonplanar surfaces.

Quite apart from its practical applications, the problem is of some theoretical
interest. An edge description does not necessarily represent a unique object, and
an algorithm should be able to detect ambiguities, enumerate solutions, and
accept user decisions as to which solution is required. As with many geometrical
problems, the simple cases are straightforward and the complex cases are ex-
tremely difficult; for example, many pathological cases can exist—vertices and
edges contacting faces, and coplanar opposing faces meeting with edge contact.

Although the literature on geometric modeling is extensive (Baer, Eastman, &
Henrion. 1979) and growing rapidly, few authors have chosen to represent
objects formally. They are therefore generally unable to prove the correctness of
their methods. to handle the full range of pathological cases and ambiguities that
occur in practice, or even to describe objects precisely. However, the PADL
project (Requicha & Tilove, 1978) is based on point set topology and its archi-
tects are able to prove the correctness of algorithms for computing the set opera-
tions of union, intersection, and difference between polyhedra. Other workers
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have used Euler operators (Baer et al., 1979) to ensure correctness of topology as
an object is constructed. Idesawa (Idesawa, 1973; Idesawa, Soma, Goto, &
Shibata, 1975) describes a wire frame reconstruction scheme as part of the
general problem of constructing solids from many 2-D projections. The method
used is based on finding sets of coplanar edges and fitting them together to form
solid objects; however, the reconstruction method is not based on a formal
description of objects and does not handle ambiguities or many of the patholog-
ical cases. Experience in modeling has taught us that even though pathological
relationships among faces, edges, and vertices may not be physically realizable,
they do occur frequently in the stylized world of geometric modeling, and a
general-purpose modeling system should be able to handle them. Lafue (1976)
also describes a program for generating solids from 2-D projections, but requires
that objects be described in terms of faces rather than edges; further, faces are
described in a stylized manner with extra edges to permit description of holes.

Other authors have considered the machine vision problem of recognizing
polyhedral objects from incomplete edge descriptions (Clowes, 1971; Huffman,
1971; & Waltz, 1975). In this situation local ambiguities can exist and are
resolved, if possible, by global propagation. The propagation is performed by
labeling areas, whereas the algorithm described in this paper handles ambiguities
in terms of volume regions. The use of volumes rather than areas leads to a much
simpler handling of the process of labeling.

This paper is divided into four sections. Section 2 gives formal definitions of
the concepts needed in order to be able to explain the algorithm and describes
some of their consequences. Some standard topological notation is discussed in
the appendix. Hocking and Young (1961) may be used as a reference for these
terms. Section 3 describes the stages of the algorithm, which has been coded and
has performed well even on complex objects. Section 4 gives a number of
examples which illustrate the performance of the algorithm.

2. BASIC CONCEPTS

The concepts defined in this section are based on some fundamental topological
ideas which are described in detail in Hocking and Young (1961) and to a lesser
extent in the appendix. Throughout the paper the standard topology in IR? and
the induced topology on subsets of IR3 are assumed. Vertices refer to points in
IR? and edges refer to line segments defined by two points in IR3. The approach
used in this section is to define faces, objects, and wire frames, and then describe
the consequences of these definitions.

Definition 1

A face, f, is the closure of a nonempty, bounded, connected, coplanar, open
(in the relative topology) subset of IR3 whose boundary (denoted by af) is the
union of a finite number of line segments. P is used to denote the unique plane
which contains f.B
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FIG. 6.1. An object exhibiting
various kinds of intersections.

Definition 2

An object, O, is the closure of a nonempty, bounded, open subset of IR?
whose boundary (denoted by 90) is the union of a finite number of faces.®

The wire frame algorithm uses many geometric facts about objects. However,
rather than define an object as being a set of points satisfying a long list of
properties, we have preferred to offer a very simple definition of an object and
then prove that it has all the desired properties. Thus from the definitions above it
is easy to see that the “*cube,” {x, v, zEIR}|0=x=1,0=y=<1,0=z = l}is
an object and that {(1, v, z2) EIR}0 =y = 1,0 =< z < 1} is one of its ‘‘square”’
faces. Starting off with open sets means that faces and objects have nontrivial
interiors.

Notice that it is not assumed that an object is the closure of a connected set.
This allows objects that consist of disjoint ‘‘solids’’ or even objects which
intersect in edges, etc. One can argue that this last case, illustrated in Fig. 6.1.
does not represent a ‘‘real’’ object, but in practice all sorts of strange objects can
appear. Thus, we decided to handle the most general case possible. Furthermore,
this generality does not exact any penalty other than creating a larger number of
solutions.

Another point worth noticing is that Definitions | and 2 allow many different
representations of the boundaries of faces and objects by line segments and faces
(respectively). However, canonical representations of the boundaries can be
defined which correspond to one’s intuitive notions about such things. To get to
these representations it is necessary to introduce several additional concepts.

&
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Definition 3

(a) Let f be a face. The vertices of f, V(f), are defined to be the set of all
points for which two noncollinear line segments, contained in of, can be found
whose intersection is the given point. »

(b) Let f be a face. The edges of f, E(f), are defined to be the set of all line
segments e, contained in df, satisfying the following conditions:

1. The endpoints of e belong to V(f);
2. No interior point of e belongs to V(f).

(c) Let O be an object. The vertices of 0, V(0), are defined to be the set of all
points p for which faces f,, f,, f; C 80 can be found such that f; N f, N f; and Py,
N Pg, N Py, are both exactly the single point p.

(d) Let O be an object. The edges of O, E(0), are defined to be the set of all
line segments e, contained in 90, satisfying the following conditions:

1. The endpoints of e belong to V(0);

2. No interior point of e belongs to V(0);

3. For every point p of e, two noncoplanar faces can be found, f|, f, C 90 such
thatp € f, N f,.

(e) Let G be an object. The wire frame of O, WF(0), is defined to be the
ordered pair [V(0), E(0)]. O

The concepts have been defined, but some work is required to show that
things fit together as expected. For example, it is not clear that V(O) is finite. The
reason for keeping the definitions so general is that it is fairly easy to check
whether the concepts here include a particular class of entities.

It can be shown that V(f), E(f), V(0), and E(0) are all finite. V(f) and E(f)
yield the intuitive representation of f which will be described more fully below.
V(0) and E(0) do not quite represent O, since the faces of @, which have not been
defined so far, are needed. Before getting into the definition of the faces of 0, the
nature of faces is first described in somewhat greater detail. To do this an
additional concept is needed.

Definition 4

A I-cycle is a collection of coplanar line segments {e,, ..., e} in IR3
having the following properties:

I. The intersection of two distinct elements ¢, and ¢; is either the empty set or
a point which is an endpoint of both line segments;

2. Every point of IR? is the endpoint of a nonnegative, even number (in most
cases 0) of the e;. O
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In order to be able to give a complete definition of a face, it is necessary only to
describe what is meant by the inside and outside of a I-cycle. A 1-cycle has an
inside (outside) if there is a bounded (unbounded), connected, open set whose
boundary is the given I-cycle. A 1-cycle may lack an inside or an outside, or
may have them both. Some examples are discussed following Theorem 5. When-
ever a point is said to be inside (outside) a I-cycle, €, it is meant that % has an
inside (outside) and that the point in question belongs to some bounded (un-
bounded), connected, open set whose boundary is €. Actually, if a I-cycle, €,
has an inside (outside), there is a component of the complement of € whose
boundary is ¢ and which contains all other bounded (unbounded), connected,
open sets whose boundary is 6.

Theorem 5

Let f be a face. Then l-cycles, €,, €,, ..., €, (k = 0), contained in 9f can be
found such that

L af =G, UG, U...U%G,
2. Face f consists of all points inside 6, and outside

k
‘6, (i = 1), and the points of U €

i=0

3. The l-cycles are all disjoint. O

A typical face is pictured in Fig. 6.2. Note that the boundary can intersect
itself at various points such as v, v,o, and v, The face in Fig. 6.2 can be
defined in terms of three l-cycles: 6, (traced out by following the sequence of
VErtices V, V, . . . Vg Vi Vq Vyy Via Vy3 V), 6 (traced out by v 4 Vs V6 Vi7 Vig
Vio Vao Vig V16 Via). and €5 (traced out by vy, vy, . . . Vo V5,). Thus the face in
Fig. 6.2 consists of all points in the inside of 6, and in the outsides of 6, and 6,,
plus the points actually belonging to €, €, and ‘6. Note that the points v,, v,
and v,, are collinear, but by the definition of E(0), v, v, and v, v, actually
belong to E(0), but v, v,, does not. Note also that not every 1-cycle has an inside
(6,. for example. fails the connected set requirement). Similarly, not every 1-
cycle has an outside (‘6. for example, again fails the connected set requirement).

The faces of an object are now defined. Again, the definition turns out to be
rather straightforward, and it can be shown that the faces defined in this way
actually turn out to be the things one would like to call faces anyway. From the
following definition it is clear that the faces of an object are really determined by
the object rather than by any particular representation of the object or its
boundary.
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FIG. 6.2. A typical face.

Definition 6

Let O be an object. The faces of O, F(0), are defined to be the closures of the
onnected components of 90 — U E(0). O

A number of the results hold true for the faces of an object. Some of the
nportant relationships are summarized in the following theorem.

Theorem 7
Let G be an object and F(0) = {f,, ..., f, }. Then

n

I. 90 = f;

i
i=1

2. U E(f) C E(O) U I', where T is the set consisting of all line seg-

i=1

ments which are unions of elements of E(0);

3. U V() C V(O);

i=1
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4. Any face f C 30 for which E(f) C E(0) U I', where I is as in (2) above, is

the union of elements of F(0);
5. The intersection of two distinct elements of F(0) is a union of elements of

E(O) and subsets of V(0). D

A few brief remarks about (2) and (3) above are in order. Vertices of an object
need not be vertices of any face; e.g., in Fig. 6.1 point A is in V(O) but is not a
vertex of any face of ©. Thus the corresponding edges must be broken up into
smaller line segments when considered as edges of O, but this division does not
occur if any face is considered separately.

To give the reader an idea of what objects look like in this model, two
additional concepts are needed.

Definition 8

A primitive object is an object whose interior is connected. O

The key point of Definition 8 is to prevent problems caused by the peculiar
types of intersections illustrated in Fig. 6.1. In that figure, there are three primi-
tive objects: a cube and two triangular prisms. In general, an object can be
decomposed into primitive objects which do not have any 2-dimensional inter-
sections between any two of them.

Definition 9
A 2-cycle is a collection of faces {f,, ..., f,,} in IR? having the following

properties:

1. The intersection of two distinct elements f; and f; is the union of the

elements of E(f;) N E(fj) and a finite number of points;

2. Every element of U E(f;) belongs to an even number of distinct

i=1
faces. (J
With all of these concepts a description of primitive objects can be given in
terms of 2-cycles. From this one can extrapolate to objects in general. Note how
similar the description is to the one given for faces. The definitions of inside and
outside are similar to those defined for I-cycles.

Theorem 10

Let O be a primitive object. Then 2-cycles €, €, ..., 6, (k = 0) contained in
90 can be found such that

1. 00 =6, U %, U...U%,;
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FIG. 6.3. A typical primitive object.

2. O consists of all points inside €, and outside 6, (i = 1) and the points
k
in U €;
i=0

3. The 2-cycles are all disjoint. []

The term cycle is used below in situations where it is clear from the context
whether a 1-cycle or a 2-cycle is intended. Furthermore, the comment made to
the effect that not all 1-cycles have a well-defined inside or outside applies as
well to 2-cycles, where inside and outside are defined in a similar manner. It will
be seen in the next section that to recover O from WF(O) will be necessary to
decompose primitive objects further.

Figure 6.3 illustrates a typical object which is represented by two cycles €,
and €,. The exterior cycle, 6, consists of 11 faces, while the interior cycle, €,,
has 6. The identification of the faces is left to the reader.

3. THE WIRE FRAME ALGORITHM

The goal of the wire frame algorithm is to construct all objects which have a
given wire frame. It is a fairly elaborate algorithm with quite a few distinct
stages. The key stages of the algorithm are outlined first below, followed by a
more detailed description.

Stages of the Algorithm

1. Checking Input Data. The input data are assumed to be a valid wire
frame, that is, the ordered pair of vertices and edges [V(0), E(0)] (Definition
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3(e), above). In this stage the input data may be checked for various kinds of
errors, such as nondistinct vertices and edges. The choice of actual tests per-
formed is based on the source of the input data and the expected types of errors.

2. Finding Planar Graphs. ~ All planes are found which contain at least two
intersecting edges. For each distinct plane a canonical normal is defined and. a
graph of coplanar edges formed. For each vertex lying in a plane, a circul.ar list
of edges meeting that vertex is created and ordered counterclockwise with re-

spect to the canonical normal.

3. Calculation of 1-Cycles and Virtual Faces. In each planar graph the set
of partitioning cycles is uncovered (bridges are ignored). The nesting rela-
tionships among these cycles are then determined, and all candidates for faces
found. These candidates are called virtual faces.

4. Checking for lllegal Intersections Between Virtual Faces. Two virtual
faces can intersect illegally, i.e., so that both cannot be faces of the real object,
in only two ways. These intersections are detected in this stage and appropriate
action taken:

A type | intersection occurs when an interior point of an edge of one pierces an
interior point of the other. The latter virtual face is deleted.

A type Il intersection occurs when there is no type | intersection, yet a vertex of
one is in the plane of the other and there exists a point that is interior to both. A
decision on the faces cannot be made at this stage, and temporary additional edges
called cutting edges are introduced. These cutting edges cut some of the virtual
faces discovered in Stage 3 into new, smaller, virtual faces.

5. Calculation of 2-Cycles and Virtual Blocks.  For each edge a circular list
of the virtual faces containing that edge is created. This list is ordered radially
around the edge. These lists are used to find all partitioning cycles of the virtual
face graph: the nesting relationships among these cycles are found and used to
uncover all candidates for solid regions. These candidates are called virtual
blocks. Virtual blocks are bounded by virtual faces and partition IR3. Any virtual
face which does not belong to two different virtual blocks is dropped.

6. Constructing All Solutions for the Wire Frame. A decision tree, based on
virtual blocks and using a few basic tests, assigns solid or hole state to all virtual
blocks and thereby constructs all possible objects having a given wire frame. In
this decision process, edges and cutting edges are treated separately; cutting
edges are subsequently removed. O

The reader should keep in mind that the above description and the one below
are designed for easy comprehension. As a result descriptions of each of the
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stages are given without describing every detail of the data structures and al-
gorithms used. A more detailed description of the various stages follows.

Stage 1: Checking Input Data

The input to the wire frame algorithm must be a valid wire frame, that is, the
ordered pair of vertices and edges [V(0), E(O)] (Definition 3(e), above). This
input is assumed to be in the form of a list of vertices with their 3-dimensional
coordinates and a list of pairs of vertices to represent edges. The wire frame
algorithm described in the following sections requires that the input data repre-
sent a valid wire frame, that is, a wire frame that satisfies the definitions of edges
and vertices given in Section 2. In this stage tests are performed to check the
validity of the input data and to obtain information to be used in later stages. The
exact choice of which tests to include depends on the characteristics of the input
data and performance trade-offs between the cost of performing a test first, the
usefulness of information generated for later stages, and the desirability of re-
porting errors before incurring the cost of executing the algorithm. These issues
are not considered further here.

Two fairly straightforward tests check that vertices and edges are distinct and
correctly defined. Furthermore, throughout the rest of the paper it is assumed that
each vertex and edge has a unique index.

Another test ensures that every vertex belongs to at least three edges (this is a
consequence of the definitions). This test is organized so that a table is generated
showing which edges belong to which vertex. This table is important and will be
used below.

A test which might also be performed at this point consists of checking that
edges intersect only at endpoints, i.e., in elements of V(0). Since two line
segments can intersect only if they are coplanar, this test can also partition line
segments into coplanar sets. Furthermore, it can even produce a list of edges
which intersect a given plane. A test designed to work on the idea just put forth
could be fairly expensive in terms of computer time (worst case O[E(0)2]).
Alternate tests are possible which are quicker but yield less information.

Depending on the operating environment, one can omit any of the above tests
or substitute others if necessary.

Stage 2: Finding Planar Graphs

In this stage all planes which contain at least two intersecting edges are found,
and for each plane a graph is constructed of the edges and vertices in that plane.
For each vertex in WF(0), a list is formed of the edges for which the vertex is an
endpoint. For each noncollinear pair of edges in the list, the plane containing the
edge pair is computed and a list formed of distinct planes at the vertex (each
plane in IR? is specified uniquely once a normal and a distance from the origin
along that normal are given). For each distinct plane at a vertex, a list is formed
of edges in the plane for which the vertex is an endpoint, and the edges are sorted
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around the normal in a counter-clockwise direction. It is now straightforward to
match up planes at vertices and, for each globally distinct plane, to form graphs
of the edges and vertices contained in the plane. In practice, the number of edges
at a vertex is quite small so the above procedure works quickly.

Thus, the output of this stage is a list of plane equations and, for each plane,
graphs of the edges and vertices in the plane.

Stage 3: Calculation of 1-Cycles and Virtual Faces

In this stage each planar edge and vertex graph is processed to find all
subgraphs that could represent faces in accordance with Definitions 1 and 3.
These subgraphs are candidates for faces of the object and are called virtual
faces.

From the discussion in Section 2, it is clear that virtual faces can be located by
finding 1-cycles and determining the various nesting relationships among these
"I-cycles. To make the discussion clearer, assume a plane P and a graph formed
from the edges and vertices of O which lie in P. The edges of the graph are of two
types: bridges and nonbridges. An edge is a nonbridge if and only if it lies on
some cycle. In principle, bridges must be removed. The remaining edges can
then be divided up into I-cycles which partition the plane into regions so that any
face of O lying in P is one of the regions. In practice l-cycles are found and
bridges removed in the same operation.

The algorithm proceeds by uncovering the cycle structure of the edges in P.
The methods used are now described. It can be shown that the complement of the
edges in P, I, is an open set with a finite number of open connected components.
The number of connected components is the same if the bridges are removed.
Every edge which is not a bridge belongs to the closures, in fact boundaries, of
two distinct components of I'. Since the edges are to be used to form l-cycles to
bound the various components of I, some conventions are needed for connecting
edges and the components they belong to. For the time being bridges are ignored.

Lete = v, v, be an edge. There are two ways to traverse e: either from v, to v;
or from v, to v,. Suppose i < j, and write +e to denote e traversed from v, to v
and —e to denote e traversed from v; to v,. Since P has a normal defined on 1t
whenever an edge is traversed in some dlrectlon left and right sides of the edge
can be defined as if one were walking in the same direction above the plane in the
positive normal direction.

Let I', and I", be the two components of I' whose boundaries (denoted by oI',
and «?Fz) contain e. T, is defined to be on the left, traversing e from v; to v; if +e
€ aT,. In this case —e € al',. Similarly, if +e € dI',, then —e € BF This is
the notation of algebraic topology.

At this point it is probably helpful to illustrate some of these ideas. Figure 6.4
shows a typical graph in a plane. This particular graph consists of 19 vertices and
23 edges. The only bridges are e, €,,, and €,5. Note that the bridges are in the
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FIG. 6.4. A typical graph in a plane.

closure of exactly one component and are thus not in the boundary of any
component. In this case I' has 6 components and the following relations hold:

oy = t+e, —e;3 —e5 ~e, —ey —e, +e;; —e; —ey ey

al', = —e, +e, te; +e, +es +e,; —ey te, —es —€,9 —€50
ar = tey) teyy ey teys teg —eig —€py ey

BF = te; teg —eg

ar = te; teg —€q;

6F = teg +e;, —e¢;; te;0 —€.

Now consider the various algorithmic steps needed to determine the informa-
tion above. First pick an ordered edge, i.e., an edge and a direction, say +e,;
now attempt to discover the component, I';, for which +e, € aT,, i.e., try to
complete a cycle starting from v,. Start at v, and move to v, pick the ‘‘next’’ (in
a clockwise direction) edge at vq, which is —e ;. At v pick +eq, then +e,,,
then —e,, then —eg, then —e,, then —e4. Edges are checked off as they are
added to a cycle; if an edge occurs twice in the same cycle, then a bridge exists
(in this case e).

‘Whenever a bridge is found, there is a cycle between its two occurrences (in
this case +e,;, —e,, —eg —e;). This cycle (6,) is set aside and the search re-
sumed at v, ignoring e, which is removed from the graph. The sequence is now
te; —e,;; —es te,; —€,,;. The bridge detector now spots e, as a bridge and
removes it. The cycle between the two occurrences is the empty cycle, so the
search is resumed at v,. Another cycle (€,) is found as +e, —e,; —e5 —e, —e,
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Each cycle is now examined to see whether the component it bounds is inside
or outside of it, i.e., every point of the component is inside or outside the cycle.
In this case I, is outside both €, and 6,. This information is recorded in the
cycle tree described below. Also, for each vertex encountered, the cycles to
which it belongs are recorded, and for each edge used, the sense in which it is
used.

Now pick any other edge which has not been traversed in both directions and
start all over again. Suppose —e,, is picked now, giving the sequence —¢,, +¢€,
+es (¢, has alrcady been eliminated) +e,5 —e, +e, +e; +ey,, at which point
the bridge ¢, is eliminated, leaving the cycle +e, +es te;; —e; +e, +ej,
which bounds a bounded (inside) component. Data are recorded as before and the
process repeated with another edge which has not yet been used in both senses.
In this way the following cycles are found:

q, — —_— —_— pa— .
€,(out) = +e,, —€5 —€y —Cy
@,(out) = +e; —¢ ;3 —e5 —Cy TCy ~€y
@,(in) = +e, tes te3 —ey te, tey
Blout) = +e, —€5 ~C€9 T TC1s

Boin) = —cpy tey, ey tejg Fe5 T TC g TCp:
B lin) = —cp, te; Teg!

6,(in) = +e; tey —€yy

©g(in) = —¢4 teg tey, —€p tey,.

The notation “‘(in)"" above shows that when the cycle is traversed in the direction
indicated, the unique connected component of the complement in P of the cycle,
which always lies to the left, is bounded. Similarly, “*(out)’’ denotes the case
when the cycle is unbounded.

The amount of checking that must be done may be reduced. Suppose that a
bridge or generalized bridge (i.e., a connected sequence of bridges) runs between
two different cycles 6 and 6’ (the sense of the bridge must agree with that of the
cycles). Then at least one of them is an (out) cycle. Also, if € is an (out) cycle
and €’ is a distinct cycle which intersects 6 (i.e., has at least a vertex in
common), then it must be an (in) cycle.

Thus in the above example, once €, and €, are both found to be (out) cycles,
the senses of the other cycles are determined if they are derived in the sequence
shown. In particular, 6, is an (in) cycle because it intersects €,. 6, is an (out)
because it is joined by a bridge (e,;) to the (in) cycle 6,. 65 and € are both (in)
cycles because they intersect the (out) cycle 6, while ‘€, and ‘64 are both (in)
cycles because they intersect the (out) cycle 6,. !

At this stage the cycles in P have been found, and will be used to find
candidates for faces, i.e. . virtual faces. The description of a face given in Section
2 and the concepts introduced here show that a face is given by its outer boundary
which is an (in) cycle, 6, and some finite number of disjoint (out) cycles, €,,
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@©,. ..., 6, which are contained in the inside of €, and have the additional
property that if any of them is contained in the inside of any other (in) cycle 6’,
then 6, is contained in the inside of " as well. This leads to consideration of the
following tree structure.

The root is labeled by P. A cycle is a descendant of an (in) cycle, €, if and
only if it is contained in the inside of €. A cycle is a descendant of an (out) cycle,
6, if and only if it is contained in the complement of the outside of €. The tree
structure for the cycles derived from Fig. 6.4 is given in Fig. 6.5.

A few observations aid in the construction of the tree. Any cycle which
intersects an (out) cycle is automatically an (in) cycie and a son of the given cycle
in the tree. Furthermore, at the finish (in) and (out) cycles must alternate. From
the tree it is easy to determine that there are exactly five virtual faces at this stage:
the regions bounded by €5, €4, €., and 6; the region inside of 6, and outside
of 6,.

There is another point which is appropriate to bring up here. The wire frame
algorithm has the property that if it fails to find an object having a given wire
frame, then no such object exists. In practice, one works with wire frames of
objects that exist. Thus if the final results of the algorithm indicate that no such
objects exist, it is probable that some error was made in the input wire frame.
Thus at the various stages there are a number of simple checks which can be
performed to determine whether or not the wire frame is valid. At the end of
Stage 3 one can check to see whether each edge belongs to at least two non-
coplanar faces and that each vertex belongs to at least three faces which lie in
planes whose intersection is exactly the vertex. Failure to meet any of these
conditions would indicate the existence of an error at this point.

N

¢, (out) ¢, (out)
/\
&5 (in) g (in) ¢y (in)
¢, (out)
FiG. 6.5. Tree of 1-cycles. Cs (in) ¢ tin)
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Stage 4: Checking for lllegal Intersections Between
Virtual Faces

The description of objects in Section 2 is based on 2-cycles, which have the
property that the faces belonging to them intersect only at boundary points of the
faces. Two virtual faces intersect illegally when there exists a point in the
intersection that is internal to both. In this case it is not possible for both to be
real faces of the object. Illegal intersections can occur in either of two ways:

1. An interior point of an edge of one contains an interior point of the other;
I1. The above type of intersection does not occur, yet a vertex of one is in the
plane of the other, and there exists a point that is interior to both faces.

These illegal intersections, which are known as type I and type I intersections,
respectively, are detected in this stage, and appropriate action taken.

A type 1 intersection occurs when any inside point of any virtual face is an
inside point of any element of E(6). If such a condition is found, the virtual face
is dropped from the list of virtual faces because it is impossible for itevertobea
face. To see this. note that the edges of O belong to actual faces. If a virtual face
intersects edges as described above, it would have to intersect the corresponding
faces. Such an intersection would produce at least one edge emanating from an
inside point of a face, which would be impossible. (A type 1 intersection is
shown later in Table 6.1(d).)

Two ways are proposed to handle the second case. The second method, which
is the preferred method, also suggests a quick means for checking for type 11
intersections.

The first method of handling type 1l intersections is to pick maximal subsets
of virtual faces which lack a type II intersection and to proceed through the
remaining stages of the wire frame algorithm to uncover all possible solutions
under those assumptions. In some cases one can use any solutions found to
resolve the true nature of type Il intersections. In other cases it might be neces-
sary to go through the remaining stages of the algorithm with several different
maximal subsets lacking a type 1l intersection. For many practical objects, type
I intersections are relatively rare (they arise from high degrees of symmetry), so
this solution is quite a practical one. It also has the advantage that it simplifies the
decision procedure in Stage 6, since there is only one kind of edge to consider.

The second method is based on the observation that a type Il intersection
consists of a finite number of line segments, the endpoints of which are elements
of V(0). To see this, let f, and f, be faces that have type II intersection. Let ! =
P, N Py, Letp € f, N f, be an interior point of both f, and f,. Let p, and p, be
the points of / which give the maximal line segment containing p and contained
in f, N f,. Since f, and f, are compact, i.e., closed and bounded, p, and p,
belong to af, U af,. Since no boundary point of f; is an inside point of f, and
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Vs

e ——

FIG. 6.6. A regular octahedron ex-
hibits many type II intersections. ve

vice versa, p,, p, € df, N af,. If the edges of f, and f, which contain p, (p,) are
collinear, then f, and f, must be coplanar and must overlap in nontrivial ways.
This is impossible in view of the tests performed in Stage 3. Thus p, and p,
belong to two noncollinear edges which can only intersect in an element of V(0).
To help visualize the preceding argument, look at Fig. 6.6. Here f| is given by v,
vy vy vy vyand f, by v, ve v, vs v, p,is v,, and p, is v,. This gives a quick test
for type II intersections: visit each vertex in turn and see if any of the virtual faces
containing that vertex intersect.

Suppose that f, and f, are two virtual faces having a type II intersection;
introduce the line segments of intersection as new edges, called cutting edges.
Also introduce all the necessary points of intersection. The new vertices and
edges are marked to distinguish them from the original vertices and edges. In
general, these new vertices and edges will partition some of the virtual faces into
smaller virtual faces. Using the algorithms described earlier, all those cutting
edges which are bridges in a particular virtual face having type 1l intersections
are identified. All virtual faces which induce these bridges are dropped, since
they cannot possibly separate solid matter from empty space. Of course, after
dropPing some virtual faces, some of the type II intersections may disappear.

Since type Il intersections are mostly the result of symmetry, we consider one
of the most symmetrical cases possible, that shown in Fig. 6.6. After the regular
octahedron of Fig. 6.6 passes through Stage 3, 11 faces will have been found: the
usual 8 faces plus the 3 given by v, v, v3 v, v, v, VsV, Vg vy, and v, vs vy vg v,
The last 3 virtual faces (pairwise) have type Il intersections. Each of the last 3
faces partitions each of the others into smaller virtual faces, which are all kept,
ending up with 7 vertices, 18 edges, and 20 faces. The new wire frame is
illustrated in Fig. 6.7.
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Stage 4 with cutting edges inserted.

Stage 5: Calculation of 2-Cycles and Virtual Blocks

In this stage virtual faces are fitted together to form candidate objects called
virtual blocks. From the definition and discussion in Section 2, it is clear that
objects can be found by calculating all 2-cycles and finding the nesting rela-
tionships among them. This 3-D process is a close analog of the 2-D process of
fitting edges together to form virtual faces. However, the definition of a 2-cycle
is in terms of F(U), and at this stage of the algorithm only the virtual faces VF(0)
are available, where F(0) C VF(©). Thus, VF(0) can contain elements which are
not faces of © and are known as pseudo-faces. Pseudo-faces arise through chance
alignments of edges and may occur in two forms:

1. The interior of the virtual face is empty space;
il. The interior of the virtual face is interior to solid material.

It will be seen that type I pseudo-faces are always rejected and that type 11 may
either be rejected or be used to partition a primitive object into smaller
subobjects.

Some tests that detect pseudo-faces have been seen in Stage 4. An intersection
of type I shows that the virtual face involved is really a pseudo-face. Similarly,
an intersection of type Il indicates that at least one of the virtual faces involved is
a pseudo-face. Note that not every pseudo-face is involved in an illegal intersec-
tion of one of these two types. Another kind of pseudo-face that is detected in
this stage is the 2-bridge, i.e., a virtual face which does not belong to any 2-
cycle. After detecting and handling all of these pseudo-faces, the remaining

FIG. 6.7. A regular octahedrom after
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virtual faces naturally break up into 2-cycles. These 2-cycles partition all of IR3
into connected components in much the same way that the 1-cycles partition the
planes. In fact, the remainder of this stage is very similar to the virtual face
creation algorithm of Stage 3. However, since this is in 3-dimensional space, no
new types of intersections can occur and no new tests are necessary. As in Stage
3 some conventions are needed for describing the relationship beween virtual
faces and the components of an object which they bound.

Let B, and B, be the two components of an object B* whose boundaries
(denoted by 9B, and 9B,) both contain given a virtual face f. If the canonical
normal (mtroduced in Stage 2) erected at any interior point of f points away from
(into) By, then +f € 9B, (—f € 9B,). Clearly, +f € 9B, (—f € 9B,) iff —f €
0B, (+f € 9B,). The goa] is to flnd the various components of B* because the
original object can be built out of them.

Before proceeding further, consider a simple example. An object can have 1-
cycles which result accidentally; in Fig. 6.8, the virtual face, Vs Vg Vo Vg Vs, IS @
pseudo-face, because it is not an actual boundary between empfy space and solid
material. However, this cannot be detected until the object is considered
globally, i.e., when virtual faces are being found in the various planes, there is
no way of distinguishing between faces and pseudo-faces. Only when the con-
struction of the complete object in Fig. 6.8 is attempted is vy v¢ v, vg Vs seen to
be a pseudo-face. )

This problem of pseudo-faces is handled by working with virtual blocks, i.e.,
2-cycles which do not contain any nonbridge, virtual faces in their interior. Thus,

6

5. 6.8. An example of a pseudo-face. v
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virtual blocks are the primitive building blocks for dissection of an objefzt l?y
pseudo-faces. The object in Fig. 6.8 has three virtual blocks associated with it:

1. The closure of the unbounded component of B*.;
2. The closure of the bounded component of B* lying above vg vg V5 Vg Vs;
3. The closure of the bounded component of B* lying below vg v¢ v, vg V5.

To describe the boundaries in terms of the notation introduced above, assume
that in Fig. 8 the origin is in the middle of the cube defined by v, v,, Vi, Vg Vs,
Vg» V. and vy, and that all plane positive normals radiate outward, giving

aB, = —f, =f, —f, —f, —fs —f, —f; —fg —f —

3B, = 1, +6, +6, +, +, —fyy;
9B, = fg +i, +1, +fg +f0 +f15
where

f, is the face defined by vg Vg Vi Vg Vs;
f, is the face defined by vg v4 Vi) Vi Vg!
f: is the face defined by v, vg vy, Vi Vo)
f, is the face defined by vg Vs Vg V5 Vg
f, is the face defined by v, v, v Vs v}
f;, is the face defined by v, v, v, v (o3
f, 1s the facc defined by vy v, vg V5 vy
fy is the face defined by v, vy v vy V45
f, is the face defined by vg vy Vyy Vi3 Vo
f,q is the face defined by vs ve v, vy vs!
f,, is the face defined by v, v, vy v, V).

Note that just as there were (in) and (out) 1-cycles, there are (in) and (out) 2-
cycles. In the case above, 9B, is an (out) 2-cycle, while 3B, and 9B, are both
(in) cycles. As the reader probably suspects at this point, a tree of 2-cycles,
similar to the one for I-cycles, is constructed for an object. In fact, all the rules
given for constructing a I-cycle tree hold for 2-cycle trees. Virtual blocks are
derived from this tree in the same way that virtual faces were derived from the I-
cycle tree. In this case the tree is represented in Fig. 6.9.

Before describing the procedure for finding 2-cycles, consider the case of the
regular octahedron (Figs. 8.6 and 8.7). Because the octahedron is so sym-
metrical. it has three pseudo-faces each of which intersects the other two. Since
there is no a priori method to eliminate any of them, either all possibilities can be
tried or cutting edges can be introduced. Thus the octahedron of Fig. 6.7 decom-
poses into nine 2-cycles—one (out) and eight (in) 2-cycles.
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]

9B, (out)

FIG. 6.9. Tree of 2-cycles. B, (in) 2By (in)

The algorithmic steps to discover all 2-cycles and 2-bridges are now de-
scribed. For each edge e of 0, a circular list is formed of all virtual faces which
have e contained in their boundary. The faces are ordered in the same way as the
corresponding edges were ordered in Stage 2, that is they are ordered radially
around the edge. The search for 2-cycles now proceeds very much like the search
for 1-cycles. Pick a virtual face with an orientation, i.e., +f or —f, and attempt
to find a virtual block containing it. Process edges one at a time by adding the
appropriate face with the correct orientation, and maintain information on the
number of times the edge is used and the sense of each use. Choosing an
orientation for a virtual face is equivalent to assuming that solid material lies on a
particular side of the virtual face. Thus an edge is processed by seeing which
oriented faces contain it and picking those oriented faces which are neighbors
through the solid material. Figure 6.10 illustrates this point by giving an edge-on
view of the process. Suppose that the virtual faces f,, f, f,, and f; have been
selected to be in 2-cycles with the orientations suggested in the figure by the
normals and the shading. Since f; and f, are neighbors through solid material,
they can both be dropped from further consideration. To find a virtual block both
f, and fs5 would need to be added to the proposed 2-cycle with the indicated
orientation. Note that it would be impossible for f, to belong to the 2-cycle
because each edge can only belong to an even number of faces. If a virtual face is
found which would need to be incorporated into the same 2-cycle twice (it will
turn out that it is with opposite orientations), then that virtual face is a bridge and
is deleted from the list of virtual faces. The partial results are saved and the
process continued until the 2-cycle is completed. At the end of this process all
bridges have been eliminated and every remaining virtual face belongs to exactly
two distinct virtual blocks. Furthermore, the interiors of the virtual blocks are
exactly the components of the complement of the remaining virtual faces. The
original object must be a union of some of these virtual blocks, thus showing that
in principle the problem has been reduced to a problem which involves only a
finite number of possibilities. The next stage handles this last problem
efficiently.
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FIG. 6.10. Finding virtual blocks—an edge’s perspective.
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It only remains to mention one complication which can ar?se. ln.some cases,
several edges of @ are collinear and can be combined into a S|.ngle line segment.
In this case it is possible for one face to have as an edge a line segment which
contains edges from other faces as subedges. In this case, there are a num.ber' of
straightforward modifications which must be made to the 2-cycle finding

algorithm.

Stage 6: Constructing all Solutions for the Wire Frame

In this stage virtual blocks are fitted together to generate all objects with a
given wire frame. Basically each virtual block may have solid or hole stat.e angi,
when a state assignment has been made to each virtual block, an ‘object.ls
obtained. However. not all assignments of solid and hole yield the desired wire
frame. An assignment of solid or hole to the virtual blocks yields an object with

the correct wire frame if

1. Everyclement e € E(0) belongs to two noncoplanar virtual faces f, a.nd f,
each of which belongs to one virtual block assigned solid state and one assigned

hole state;
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2. No cutting edge belongs to two noncoplanar virtual faces f, and f, each of
which belongs to one virtual block assigned solid state and one assigned hole
state, i.e., every cutting edge must be inside material.

A decision tree is constructed by growing those edges having the smallest
number of unassigned virtual blocks containing them. The unique infinite virtual
block is always assigned the hole state. Condition (1) is not always used to make
choices between states; the necessary condition that every edge belong to a solid
block and to a hole block is also used. However, conditions (1) and (2) are the
ones that must be satisfied. To illustrate this process consider the regular oc-
tahedron of Fig. 6.7.

There are nine blocks:

B,—the infinite virtual block;

B,—the virtual block determined by v, v, v; vg;
B,—the virtual block determined by v, v, v, vg;
B,—the virtual block determined by v, v, v, vs;
B,—the virtual block determined by v, v, v4 vg;
By—the virtual block determined by v, v, v; v;
B,—the virtual block determined by v, v, v, vg;
Bg—the virtual block determined by v, v, v, vg;
By—the virtual block determined by v4 v, v, v.

Each edge of O now belongs to two virtual blocks of undetermined status while
each cutting edge belongs to four virtual blocks of undetermined status. The state
hole is assigned to B,. An edge is picked, say e = Vv, V5, and the decision tree
begun.

Note that e already belongs to a block with hole state, so solid state must be
assigned to some block. Figure 6.11 shows the decision tree in this case. Notice
that each time the state of one of the B, (i = 2) is set to hole a contradiction is
quickly found. If B, has hole state, then B, and B must be given solid state
because v, v5 and v, v must belong to at least one solid block and there is only
one candidate for this. However, if B, has hole state, and B, and B; solid state,
the faces v, v v, v, and v, v5 v, v, contradict condition (2) for edge V5 v,.
Similar contradictions arise whenever any B, (i = 2) is treated as being empty.
Notice that after a few assignments the subsequent choices are determined and
exponential growth of the tree is avoided.

In some cases, there is an exponential number of different objects having the
same wire frame, so exponential growth cannot be entirely avoided. However, if
the tree is grown for depth, some object can be found having the given wire
frame. In practice, this stage is completed fairly quickly since the geometry
generally takes over once several assignments have been made. In complex
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BI
Solid Empty

B, solid B, empty implies Byand B solid which

contradicts condition (2) for v3v;

B, empty implics B | solid which contradicts

Bysolid condition (2) for Vv,

/

/ B empty. contradicts condition (2) for v,
B, sohd

\

B solid

\

B3, ~ohd

\

B, sohd

\

B, sohid

\ By empty, contradicts condition (2) for viv,

B¢ empty. contradicts condition (2) for ¥o9,

B, empty. contradicts condition (2) for v, 7,

B, empty, contradicts condition (2) for ¥, v,

By, empty. contradicts condition (2) for v ¥,

B,

FIG. 6.11. A decision tree for the regular octahedron.

objects it is often the case that many edges on the outer boundary belong to
exactly one virtual block which can be marked solid. In particular, any vertex
belonging to exactly three elements of E(0) belongs to exactly two virtual
blocks. Thus if one of them is empty, the other one must be solid.

Stage 6 feeds into an output module which puts the output together in forms
which can be understood by the user of the system. The following section shows
a number of examples in detail.

4. EXAMPLES

In this section are described a number of examples chosen to illustrate particular
features of the algorithm. The examples are illustrated in Table 6.1.
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Table 6.1(a) shows a double tetrahedron. Seven triangular virtual faces are

- found—the six outside faces and the internal area bounded by the waist of the
figure. Three virtual blocks are found; the decision process assigns solid state to

(1) and (2); block (3) is the unbounded virtual block; (1) and (2) are combined to
produce the output object. :

Table 6.1(b) shows an object with |-D bridges on the faces containing abcd
and kmnp. The plane graphs contain three bridges ef, ki, and op, none of which
appear in the virtual faces for the planes shown. Two virtual blocks are found,
one the output object and one the unbounded virtual block.

o) ()

FIG. 6.12. (a) Wire frame with 1256 edges and 836 vertices; (b) volumetric
representation of wire frame; (c) cross section of volumetric representation; and
(d) close-up view of tubular members.
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Table 6.1(c) shows four cubes positioned on two levels with four shared
vertices enclosing a rectangular area abcd; abed is found to be a virtual face, but
in the virtual block building process is detected to be a 2-D bridge (i.e..it is
assigned opposite directions in the same virtual block to become a zero thickness
sheet) and is not used in the output objects.

Table 6.1(d) contains an octahedron extended by a cube and pierced by a
vertical square prism. The two plane graphs containing abcd and efgh have type 1
intersections with the vertical sides of the hole and therefore are not virtual faces.
Six virtual blocks are found and assigned states as shown.

Table 6. 1(e) shows the object of Table 6.1(d) without the piercing hole. Four
face graphs with type 1l intersections occur and are shown as virtual faces with
cutting edges inserted. Thirteen virtual blocks are found and assigned states as
shown.

Table 6.1(f) shows a well known ambiguous wire frame (Voelker & Re-
quicha, 1977); eight virtual blocks are found, and the decision process enumer-
ates three valid solutions: one pair of opposing blocks (Sutherland, 1979; Boyse,
1979), (Wesley et al., 1980; Brown, 1977), or (Taylor, 1976; Woo, 1975) must
have hole state, the center block (7) always has hole state.

Table 6.1(g) shows another ambiguous wire frame that could well occur in
practice. Nine virtual blocks are formed; the decision process finds that block (8)
can have hole or solid state.

Figure 6.12(a) shows a more complicated wire frame with 1256 edges and
836 vertices. In the course of the reconstruction process the wire frame algorithm
finds 93 virtual blocks, most of them being window holes and enclosed volumes
inside tubular members of the structure, and generates the volumetric representa-
tion shown in Fig. 6.12(b). Figures 6.12(c) and (d) show a cross section of the
reconstruction with the nested interiors of tubular members correctly
represented.
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APPENDIX A: TOPOLOGICAL CONCEPTS

A brief introduction is given to those standard topological concepts used in this
paper. For more details, see Hocking and Young (1961).

Definition A.1
Let x € IR? and r be a positive number. B,(x) is used to denote the set of all

123
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points of IR* whose Euclidean distance from x is less than r. B (x) is called the
open ball at x of radius r. O

Definition A.2

A subset X C IR3 is said to be open if, for all x € X, there exists r > 0 such
that B,(x) C X. A subset Y C IR? is said to be closed if IR? — Y is open. Note
that open balls are open and that & and IR> are both open and closed. O

Definition A.3

Let X C Y C IR3. Then X is said to be open in Y in the relative (induced)
topology [or open in the relative (induced) topology for short] if, for all x € X,
there exists r > 0 such that B,(x) N X = B,(x) N Y. X is closed in the relative
topology if Y — X is relatively open. O

In the cases most of interest here, i.e., subsets of a plane in IR3, being
relatively open means containing open disks (the intersection of a plane and an
open ball). The following definitions will be stated only for the standard to-
pology of IR? (Definition A.2) and the reader should verify that they make sense
for any relative topology.

Definition A.4

The closure, X, of a subset X of IR is the set {x € IR?| forall r > 0, B,(x) N
X # @}. In particular, X C X. O

It can be shown that X is a closed set and that a subset Y C IR3 is closed if and
onlyif Y =Y.

Definition A.5

The boundary, 3X, of a set X C IR3 is the set X N (IR3 — X). O
Thus a point, x, is in dX if and only if there are points of both X and IR3 — X
arbitrarily close to x.

Definition A.6

A subset X of IR3 is said to be connected if two nonempty open subsets U,,
U, of IR? cannot be found such that U, N U, = &, U, N X # & # U, N X, and
XcUuuu,.ao

In the case of IR3 and its subplanes, all connected open subsets have the
property that any two points in a given subset can be connected by a path which
lies entirely in the given set.

Definition A.7

Let X C IR*. A connected component of X is a subset Y of X which is
connected and such that for any other connected subset Z C IR3, either Z C Y or
ZNY=@.o

Any set in IR can be written as the disjoint union of its components.
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Definition A.8

A subset X of IR? is said to be bounded (unbounded) if there exists for allr >
0 a point p € IR* such that X C B(p) (X € B,(p)].
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