Discrete Mathematics 24 (1978) 7-11.
© North-Holland Publishing Company

ON THE NUMBER OF PRIME IMPLICANTS

Ashok K. CHANDRA and George MARKOWSKY

Computer Sciences Department, IBM Thomas J. Watson Research Center, P.O. Box 218,
Yorktown Heights, NY 10598, U.S.A.

Received 4 July 1977
Revised 17 March 1978

It is shown that any Boolean expression in disjunctive normal form having k conjuncts, can
have at most 2* prime implicants. However, there exist such expressions that have 2%/2 prime
implicants. It is also shown that any Boolean expression on n distinct propositional variables

can have at most 0(3"/\/;) prime implicants, and that there exist expressions with £2(3"/n)
prime implicants.

1. Prime implicants related to the number of conjuncts

Definition 1.1. A literal is a propositional symbol (variable) or a negated proposi-
tional symbol. A conjunct is a conjunction AX_, L, k=0, of literals L, where the
empty conjunction stands for true. A boolean expression is in disjunctive normal
form (d.n.f.) if it is a disjunction V/{_, A, r=0, of conjuncts A, where the empty
boolean expression stands for false. A conjunct A is an implicant of a boolean
expression E if A>E (where = stands for logical implication). Thus all
conjuncts of a d.n.f. expression are its implicants. A conjunct A is a prime
implicant of a boolean expression E (see, for example [2.5]) if A=>E, but for
every conjunct A’ each of whose literals is also a literal of A, A’ E. In other
words, prime implicants are the minimal implicants of a boolean expression.
Let PI (E) be the number of distinct prime implicants of a boolean expression E
(two prime implicants are “‘distinct” if they do not have the same set of literals).
The boolean minimization problem is that of finding short d.n.f. expressions
equivalent to some given d.n.f. expression. Minimization can achieve arbitrarily
large savings since arbitrarily large expressions can simplify to true. We define
below the function f which is a measure of how much an expression can be
simplified if the conjuncts of the given expression are all prime implicants. fis
also a measure of how many prime implicants may be generated when using a
minimization method such as the Quine-McCluskey algorithm [4, 6].

Definition 1.2. For k=1 let f(k) be defined by:
f(k)=Max {PI(E): E is in d.n.f. with k conjuncts}. 1)
We show below that f(k) is finite.
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Theorem 1.3.
3lk/3j Sf(k) < Zk. (2)

Comment: 3%/3 =(Q(2°5%)  Also the lower bound can be achieved with k +
{log, k] propositional symbols.

Proof. Lower bound. The cases k=1, 2 are trivial. For k=3, let r=1{} k|, and

s = [log, r]. The propositional symbols are a,, a,,...,a, b,,...,b, c
dl"‘.’d'. S 2 Yy I =+« s Lps
Let A;,..., A, be conjuncts using only a,, ..., a, such that
A nAj=false for i#j
and (3)
V A, =true.
i=1

This may be done as follows. For r =1, let A, be simply the expression which is
always true (the empty conjunction). Otherwise, for r=2, let t=
2°—r(0<t=<r-2). Forisr—t let A, = V-1 x; where x; is a; if the jth bit in
.the_ s-bit bin'ary representation of the integer i —1 is 1 (high-order bit first), and x;;
is g otherwise. For r—t<i=<r, let A, = A2} x; where x; is a; if the jth bi,t in thg
s-bit binary representation of r—t—1+2(i—(r—t))=2i—r+ tl—— lis1,and x;; is @
otherwise (comment: r—t is an even integer). Thus for 1<t=<r—¢, A is trllxle fori
exactly one assignment of truth-values to a,, . . ., a,. Forr—t+1< ;slr A, is true
for exactly two assignments of truth-values to ai,...,a, Since the a’ssig'nments
:flre all distinct (they match up with distinct integers) we see that A, A A, =false for
i#j. The total number of truth-value assignments thus CO\;ered] is r—t+
2r—(r—t+1)+1)=r+t=2% so the disjunction of the A, is=true

Let the expression E be I .

(A]/\b])V(A;/\Cl)V(AlAdl) \/(AZ/\bz)v. .. V(Ar/\by)V(A,/\C,)V(A,/\d')_

Then each of the 3" conjuncts of the form

>

y; where y; is b, ¢;, or d; (@)

is a prime implicant of E. To verify this, let D = Ai-1 y: be a conjunct of the form
(4) above. Then D =>E, because in any truth assignment for which D is true, at
least f)ne of the A;’s must be true by (3); say A, is true, in which case A A y’ is
t.rue, i.e., E is true. On the other hand, if B(BZ A) is a conjunct such thatpD:;B
(i.e., B contains a proper subset of the literals in A), then B35 E, because we can
c.hoose a truth assignment in which B is true and E is false as follows. Say the
literal x, in D is not in B, then assign true/false values to the a;’s such that A, is
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true, but A, is false for all g# p (this can be done by (3)). Also let b, ¢, d, be
false, and b,, c,, d, be true for all g# p. Then B is true, but E is false.

Example. k=9. Then r=3, s=2. The expression E is
dlézb,vdldzc,vﬁldzd‘vd,azbzv61a2c2vd,a2d2va,b3va1c3va1d3.

The prime implicants include byb;bs, byibycs, bibyds, bicobs, ..., d,d»d;.

Upper bound. Let E= V%, A, where each A, is a conjunct. Let @ be the set of
prime implicants of E. We define the function &

g: g)__)z(Al 1=i=k}

as follows. For Pe @, F(P) is any subset {A;, ..., A, } such that

P>V A, (sa)

but

P> the disjunct of any proper subset of (P). (5b)
Clearly %(P) can be defined since P> E, but P2 the disjunct of the empty set
(i.e. false). We will show that if P, P, are distinct elements of # then
F(P,) # F(P,). We will actually show that %(P) determines P uniquely.

We will first show that for any Pe @, P= A}, -y ., where the x,,’s are exactly
those literals that occur in some element of F(P), but whose dual (the dual of a is
a, of @ is a) does not occur in any element of F(P). For example, if F(P)=
{ab, bc, cd}, we are asserting that P must be ad.

First, note that P cannot contain a literal whose dual is in some element of A;
of F(P) since then P would imply the disjunct of F(P)—{A,}, contradicting (5b).
Second, P cannot contain a literal which fails to occur in any one of the elements
of F(P), for if, say x, did not appear in any of the A;, then it is easy to see that
N2 Xm> V-1 A2 E, contradicting the fact that P is a prime implicant.

Thus we have shown that the only literals which can possibly appear in P are
those which appear in some element of F(P), but whose dual does not appear in
any element of F(P). It remains to show if x is any literal of the type just
described, then x appears in P.

Assume x does not appear in P. Let G = V{A;, e #(P): x does not appear in
A}, and H= V{A, e F(P):x appears in A.}. Then as P= GV H by (5a), and
neither x not its dual appears in P or in G, and x appears in every conjunct of H,
on substituting false for x we have P> G, contradicting (5b).

Clearly, since #(P) determines P, there can be no more than 2% elements in 2.

2. Prime implicants related to the number of variables

Definition 2.1. For n>1 let g(n) be defined by
g(n)=Max {PI(E): E is a boolean function on n variables}. 6)
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The function g is a measure of the complexity of boolean functions on n
variables, when written in minimal d.n.f. Dunham and Fridshal [1] presented
examples showing that

(m=( n )
N3] L+ 03] Ln+2)3)

and that g(8)=576. Harrison [2 p. 117, Example 4], observed that g(n)s3" -2~
Vikulin [7] derives the same upper bound we do, but his argument is significantly

longer and more complicated. (The authors are indebted to N.J. Pippenger for
directing our attention to [7]).

Theorem 2.2

n < = n (2n+1)/3}
Qmmwmumwmﬂgm(mﬂwﬁ @
Comment. The lower bound is £2(3"/n), the upper bound is O(3"/n).

Proof. The lower bound [1] is obtained by taking the disjunction of all conjuncts
containing [3(n + 1)} + |3(n +2)| variables, exactly | i(n + 1)] of which are negated. If
E is the resulting expression, we claim that the prime implicants of E are precisely
the conjuncts described. To see this, observe that E is true for a truth assignment
if and only if at least |}(n+1)] variables are assigned false, and at least 3(n+2)]
variables assigned true. Thus no prime implicant of E can have fewer than
[3(n+1)] negated variables, or fewer than [3(n+2)] unnegated ones. Certainly it
can’t have more than that of either.

For the upper bound, let E be a boolean function, E#true, on n variables
@y, ..., @, and let € be the set of all conjuncts on aj, . . ., a,, a, ..., da, such that
not both a; and & appear in the same conjunct (for all i). Also equivalent
conjuncts are not repeated, e.g., only one of a,d,, a,a, will appear in € The
conjuncts are partially ordered in the standard way by implication ie., A, <
A, iff A{> A,, ie., the literals of A, are a subset of the literals of A,

Let @ be the set of prime implicants of E. Then 2 is an antichain in % ie.,
P <%, and for no two distinct conjuncts A, A,€ P do we have A,<A,. Thus
|?| is bounded above by the size of the largest anti-chain in ¢

Kleitman et al. [3] have shown that in any partially ordered set there exists an
anti-chain of largest size which is invariant under any automorphism of the
partially ordered set. Let 2 be such an anti-chain for €

Let A=A} x5 and B=A! | y. A, Be%, both with t literals. Consider any
map F:la,..... Ay, ... a,}—l{a,.....a, a,....a,} such that: (a) F(a;) is
the dual of F(a,), and (b) F(A)= B under the obvious extension. % induces an
automorphism on € carrying A to B. Since 2 is invariant under all automorph-
isms, Be 9. Thus we see that if 2 contains one conjunction of ¢ literals, it must
also contain all other conjunctions of t literals. Since 2 is an anti-chain and since
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there is a conjunct B of t literals such that

. . " .
o e 2 s o y of the set of all conjuncts of t literals, for

A<B or B<A, 2 must consist exactl

) - - . . .Zed
sor;}iei—e are ()2' conjuncts of t literals on n variables, a,[l(lj ':Th;s fln;a;;m}rh d
when t = [l(2nt+ 1)} —this is seen from the fact (N2 <( )2 tiff 3r+1<2n.

— L3

completes the proof.
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