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A Fast Algorithm for Steiner Trees

L. Kou, G. Markowsky, and L. Berman
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA

Summary. Given an undirected distance graph G=(V, E, d) and a set S, where
V' is the set of vertices in G, E is the set of edges in G, d is a distance function
which maps E into the set of nonnegative numbers and SSV is a subset of
the vertices of V, the Steiner tree problem is to find a tree of G that spans §
with minimal total distance on its edges. In this paper, we analyze a heuristic
algorithm for the Steiner tree problem. The heuristic algorithm has a worst
case time complexity of O(|S||V|?) on a random access computer and it
guarantees to output a tree that spans § with total distance on its edges no

more than 2 (l ——%) times that of the optimal tree, where [ is the number of

leaves in the optimal tree.

Introduction

Let G=(V,E.d) be an undirected distance graph, where V={v,,v,,...,0,} is the
set of vertices in G, ES{{v;,v;}|v,eV,v;eV and v,-=1=vj}1 is the set of edges in G
and d: E—R is a distance function which maps E into the set R of nonnegative
numbers. G is complete if, for all pairs of distinct vertices v; and v, {v;,v;}€E. Let
S<cV be a subset of distinguished vertices of ¥ which we shall call Stemer points.

We shall denote a path in G by a sequence of vertices, u,,u,, ...,u,, such that

forall k, | Sk<p, {u,, qu}eE and u,eV. We shall say that the path is from u,
p—1

to u, and its distance is Y d({u,,u,,}). The path is Stmple if all the vertices on
k=1

the path are distinct. A shortest path from u, to u, is a path from u, to u, whose
distance is minimal among all the possible paths from U tou, A loop 1s a path,
Uy Uy, ..., U, such that u; =u,

Atreeof Gis a connected subgraph of G such that the removal of any edge
in the subgraph will make it disconnected. Let Q be any subset of vertices in a
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connected subgraph G’ of G. We shall say that G’ spans Q. A spanning tree of G
is a tree that spans V. The minimal spanning tree of G is a spanning tree of G such
that the total distance on its edges is minimal among all spanning trees. Given
an undirected distance graph G and a set of Steiner points S, a Steiner tree for G
and S is a tree in G that spans S. The minimal Steiner tree for G and §, is a
Steiner tree for G and S such that the total distance on its edges is minimal
among all Steiner trees for G and S.

The problem of finding a minimal Steiner tree for any given G and S has
been shown to be NP-complete [8]. The problem has aiso been shown to be
NP-complete even with a restricted class of function mappings for the distance
function [2]. Due to the wide application of the Steiner tree problem, we will
analyze a heuristic algorithm for the problem. The Steiner tree produced by the
suggested heuristic algorithm is not necessarily minimal. However, it will be
shown that D,,, the total distance on the edges of the Steiner tree produced by
the heuristic algorithm, is not very far from Dy, the total distance on the edges
of the minimal Steiner tree. In fact, we are going to show that, Dy/Dyn<

| . .. .
2 (l —7), where [ is the number of leaves in the minimal Steiner tree. The upper

bound for D,,;/Dyy Will also be shown to be sharp. As far as the computational
time complexity is concerned, for a given G=(V,E,d) and SSV, the worst case
time complexity of the heuristic algorithm is O(|S||V|?). The algorithm we
consider has been considered in a more restricted setting by Hwang [9].

Heuristic Algorithm

Given a connected undirected distance graph G=(¥,E,d) and a set of Steiner
points S<V, consider the complete undirected distance graph G,=(V,,E,,d,)
constructed from G and S in such a way that V, =S and, for every {v,,v;}€E,,
d({v;.v;}) is set equal to the distance of the shortest path from v; to v, in G.
Notice that, for sach edge in G,, there corresponds a shortest path in G. Given
any spanning tree in G,, we can construct a subgraph of G by replacing each
edge in the tree by its corresponding shortest path in G. Our heuristic algorithm

for the Steiner tree problem is simply the following.

Algorithm H

INPUT: an undirected distance graph G=(V, E,d) and a set of Steiner points

Scv

OUTPUT: a Steiner tree, T, for G and §

Step 1. Construct the complete undirected distance graph G, =(V},E,,d,) from
G and S.

Step 2. Find the minimal spanning tree, T;, of G,. (If there are several minimal
spanning trees, pick an arbitrary one.)

Step 3. Construct the subgraph, Gg, of G by replacing each edge in T, by its

e
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corresponding shortest path in G. (If there are several shortest paths,
pick an arbitrary one.)

Step 4. Find the minimal spanning tree, Ty, of Gg. (If there are several minimal
spanning trees, pick an arbitrary one.)

Step 5. Construct a Steiner tree, Ty, from Ty by deleting edges in T, if necessary,
so that all the leaves in T}, are Steiner points.

The readers are referred to the literatures with regard to the algorithms for
constructing the shortest path as required in Step 1 [3-5] and for finding a
minimal spanning tree as required in Step 2 and Step 3 [3, 6, 7]. We would only
mention that, as far as computational complexity is concerned, using algorithms
as mentioned above, in the worst case, Step 1 could be done in O(|S||V|?) time,
Step 2 could be done in O(}S|?) time, Step 3 could be done in O(|V|) time, Step 4
could be done in O(|V|?) time and Step 5 could be done in O(|V|) time. Overall
speaking, Step 1 dominates the computational time. Hence, our heuristic algo-
rithm has a worst case time complexity of O(|S}|V|?).

Example

G=(V,E,d) is given in Fig. la. Each edge is labeled with a distance. Let S
={v,,0,,03,0,}. Figure 1b shows the graph G,. Figure 1¢ shows the minimal
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spanning tree T, of G,. Figure 1d shows the corresponding subgraph, Gg, of G.
The minimal spanning tree Ty of Gg is shown in Fig. le. Figure 1f shows the
final output for this example, Ty,. The output turns out to be the minimal Steiner
tree. Notice that the example is chosen intentionally to demonstrate each step of
the heuristic algorithm and to reveal the fact that T, G5, Ty might not be
unique.

Worst Case Performance of Algorithm H

Let an undirected distance graph G =(V, E,d) and a set of Steiner points S be the
input to algorithm H. Let D, be the total distance on the edges of the Steiner
tree, T,,, produced by algorithm H and let Dy, be the total distance on the
edges of the minimal Steiner tree. In this section, we shall give a worst case
upper bound for the ratio, D,/Dy,y. First, we need the following lemma.

Lemma. Let T be a tree with m=1 edges. Then, there exists a loop in T,
Ug Uiy, Uy, ..., Uy, where every u, 1 SiS2m, is a vertex in T, such that (i) every
edge in T appears exactly twice in the loop, (ii) every leaf in T appears exactly
once in the sequence, ug,u, ..., u,,? and if u;, u; are two leaves in the loop, with no
other leaf between them then, u;, u; ,,...,u; is a simple path.

Proof. We shall prove this lemma by induction on m. For m=1, let {u,,u,} be
the vertices in T. Consider the loop u,, u,, u; which satisfies (i) and (i) in the
lemma. Assume for m=k>1 the lemma is true. Then, for m=k+1, let v, be a
leaf in T and {v, v} be the edge connected to v, Consider the tree T’
constructed by deleting the edge, {v,,v,}, and the vertex v, from T. By induction,
there exists a loop, uj, U, ...,us,, in T’ satisfying (i) and (ii). Replacing the first
appearance of v, in the loop by v,, v,, v, the lemma then follows. []

We now give the worst case upper bound for the ratio Dy/Dyy in the next
theorem.

Theorem 1. Let the undirected distance graph G=(V,E,d) and the set of Steiner
points S be the input to algorithm H. Let Ty be the Steiner tree produced by
algorithm H and D, be the total distance on its edges. Let Ty be the minimal
Steiner tree, | be the total number of leaves in Ty and Dy be the total distance
on its edges. Then, D;;/Dyn<2 (1 —%) <2 (1 —l—éT)
Proof. By the preceding lemma, there is a loop L in T,y such that (i) every edge
in T, appears exactly twice in Ty, (i) every leaf in Ty, appears exactly once
in Ty, and if u;, u; are two “consecutive” leaves in the loop, then the subpath
connecting u,, u; in the loop is a simple path. We may regard the loop L as
composed of I simple subpaths each connecting a leaf to another leaf. By deleting
from the loop L the longest simple subpath, we could construct a path P such

; . . n . .
that (i) total distance of P is no more than (1 —7) times the total distance of L
(i) every edge in T, appears at least once in P Let w,,w,, ..., w, be the k=|S]|

1 uy=u,, is counted as one appearance in the loop
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distinct Steiner points appearing, in P in that order. We then have the total

1 )
distance of P< (1 —%) x tota} distance of L= (1 —7> x 2 x total distance on the

edges of Ty =2 (1——%) Dyun. On the other hand, the total distance of P=the

total distance on the edges of a spanning tree for G, consisting of edges,
{wy,w,}, Wy, W3}, ..., {Wy_y, Wi} 2 the total distance on the edges of the minimal

1
spanning tree for G, =D,. Hence Dy <2 (1 —7) Dyyn- The theorem follows. []

We want now to show that the upper bound for D /Dy given in Theorem 1
is the best possible.

Theorem 2. For every positive integer 122, there exist an undirected distance
graph G=(V,E,d) and a set of Steiner points SSV such that the minimal Steiner
tree, Ty, for G and S has | leaves and has total distance Dy on its edges
whereas the algorithm H, in the worst case, could produce a Steiner tree, Ty, for
1

G and S with total distance Dy, on its edges and D y/Dyy=2 (1 —7)

Proof. Consider G=(V,E,d) defined as an complete undirected distance graph
such that V={v,,v,,...,v,,} and, for all {v,v;}€E,

2 if v;#v,,, and v;Fv,

d({vi’ UJ})={1

otherwise.

The set of Steiner points, S, is {vy,0,,...,v;}. In the worst case, Ty could be a
Steiner tree consisting of edges, {v,,v,}, {v5v3},....{v,_1,v;}. The minimal
Steiner tree, Ty, is @ Steiner tree consisting of edges, {vy, 044},

1
{02,014 1}> o> {01 Uy 1 }. Therefore, Dy/Dyyy=2(1—1)/1=2 (1 —7). 0
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