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This paper summarizes approaches to developing mathematics that can
act as a language for immunogenetics. The need for this has been docu-
mented by showing inadequacies of the standard symbolism. Apparent
distinctions in symbolizing and conceptualizing factors involved in
immunogenetics are seen to disappear in the mathematical models presen-
ted here. One model, a three-fold Boolean matrix factorization, subsumes
all approaches to the idea of specificity and yet is general enough to
incorporate data beyond that found only in a reaction matrix.

1. Symbolic Representation

Immunogenetics has adopted the obvious and perhaps necessary practice
of denoting genes or antigens by letter symbols. Thus, for example, A and
B are ABO blood group antigens, D is an Rh blood group antigen, H-2°
is an allele at the mouse H-2 complex, and HLA-A is a human lymphocyte
antigen. This symbolic representation of genes or gene products has certain
consequences that are not obvious at all but are indeed logically necessary.
A source of great difficulty is that the letters representing, say, antigens
do not stand for correspondingly well-defined discrete biological entities
but complicated residues that are (1) determined by inherited factors and
(2) recognized by immunological mechanisms. There is nothing essentially
discrete about either (1) or (2) above. Immunological recognition is certainly
not a discrete phenomenon but depends on continuously varying reaction
strengths. In spite of this difficulty it may fairly be said that immunogenetics
has been successful only in as much as it has been able to deal with discrete
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conceptual entities that can be denoted by letter symbols and subject to
the rules of inheritance.

A problem immediately presents itself. If antigens X, Y and Z have the
property that Y always occurs with either X or Z but never alone, is this
a genetic law: the gene for Y can only be expressed in the presence of X
or Z? Or is it the result of our choice of letters? XY might better be called
P and YZ called Q. In the latter case the antibodies that were thought to
define Y would now be said to cross-react—to react with P and Q.
Immunologists have almost universally adopted a notational system that
precludes cross reactivity. If, in practice, a reagent of monoclonal antibodies
reacts with antigens called P and Q this fact will be explained by attributing
to P and Q some common antigenic factor, say Y. Thus P is Y and more,
i.e. XY, and similarly Q is YZ. In this view antibodies are considered as
simple—recognizing only a single antigenic factor denoted by a single
letter—and antigens are regarded as complex—denoted by the totality of
all letters necessary to account for reactions observed with the different
simple antibodies. This rule for making letter assignments has been called
the simple—complex code by Hirschfeld (1965) who has also described the
complex-simple and complex-complex codes (Hirschfeld, 1972b) which
we will describe later.

Hirschfeld (1980) has carefully documented the experimental evidence
for cross-reacting antibodies and therefore the inappropriateness of always
using the simple-complex code. Mobraaten (1972, p. 28) has stated that
HLA serology developed according to a complex-simple interpretation.
In the previous paragraph it was seen how different choices of letter symbols
could lead to either a simple immunological situation with complicated
genetic laws or a more complex immunological situation with simple genetic
laws. The precise connection between these two extremes has been studied
by Hirschfeld (1972d, 1975). Avoiding a notational system that allows for
cross-reacting antibodies can lead to apparent genetic laws such as inexplic-
able linkage relations and the cis-trans effect which completely disappear
when cross-reacting notation is allowed.

2. Artifacts

As an example, the human Ag blood group system considered in Hirsch-
feld (1972a), Hirschfeld & Wohlgemuth (1978) and Wohlgemuth (19784,
pp. 489-97) has been thought to be a five locus system with two alleles at
each locus—the alleles called x,y; a1,d; ¢, g; t, z; h, i. Nine reagents are
considered: anti-x, anti-y, ..., anti-A. That is, each reagent is considered
monospecific and as detecting the product of a single gene from among



MATHEMATICAL IMMUNOGENETICS I 413

X, ..., h. The matrix obtained by testing 362 individuals with the nine
reagents is found in (Wohlgemuth, 1978a, p. 491).

Using the 362 x 9 matrix mentioned above as raw data for the Ag system
with no assumption made about the reagents each defining a single gene
product, the technique in Wohlgemuth (1978a) or Hirschfeld and
Wohlgemuth (1978) leads to an alternate definition of the genes in the Ag
system where there are six alleles A, . . ., F at a single locus. The definition
of each of these genes is now seen in terms of the complete panel of
(cross-reacting) reagents. Thus the definition of genes in the system is part
of a resolution of the whole system and is, of course, consistent with this
resolution. The first mentioned definition of genes x, y,... in the system
is consistent with a scientific philosophy that maintains that the best
definition is always provided by ‘“isolating” the particular gene. In this
case, monospecific reagents or simple antibodies are thought to identify
each gene, quite apart from the system as a whole. The properties of the
whole system then become a result of the way that the defined entities fit
together, For example, there is severe linkage disequilibrium in the Ag
systems—with the {x, y, a, . . . , i}-definition of genes—most of the expected
genotypes not occurring at all. For the single locus model of the system
with genes A, B, . . ., F there is of course not even the possibility of linkage
disequilibrium.

It is of course a truism that properties of basic entities in a system depend
on the definition of the entities. Mathematically, this is clear. Biologically,
this may be obscured by the overly optimistic identification of operationally
defined entities with real world counterparts. As long as operationally
defined entities do correspond to real world counterparts the properties
derived from the definitions can be interpreted as properties of the system.
But without this correspondence the properties will be artifacts of the
mindset and language used to describe the system. For example, if the six
allele A, ..., F single locus theory of the Ag system is “true”—A, ..., F
correspond to real world counterparts—then the linkage disequilibrium
seen in the system with the alternate definitions would be an artifact
produced by inappropriate notation and a mindset toward reagent or
antibody specificity.

As another example, consider the Rh system with alternate definitions
given in (Hirschfeld, 1965, 19725, 1973) and (Wohlgemuth, 19784, pp.
499-502). Traditional notation considers Rh as three closely linked loci
with gene pairs D, d; C, c; E, e at the three loci. In terms of this notation
it is cited in Wohlgemuth (1978a) that a man of type CDe/cDE was found
with anti-ce in his serum. The explanation offered for this has been that
the gene product ce is produced only when ¢ and e are on the same




414 A. WOHLGEMUTH AND G. MARKOWSKY

chromosome (in cis position) and not when they are in frans. Thus the man
would not have produced the antigens corresponding to ce and could have
anti-ce without autoimmunity. In terms of the alternate definitions of the
Rh genes—given by numbers 5, ..., 9—the same fact is recorded as: a
man of type 7,9/6, 9 was found with anti-8 in his serum. This is now quite
what one would expect. If the latter definitions of genes are “true” then
the cis-trans effect would not be a property of the Rh system but an artifact
produced by inappropriate notation.

Thus linkage relations and other ‘“‘genetic laws’ may be the result of the
way we have used letters to identify antigens and genes—artifacts of an
inappropriate notational system. That this is of more than academic interest
is seen by the enormous amount of work done in linkage studies. The
National Cancer Institute’s ICRDB Cancergram devotes an entire section
to abstracting such work each month. The writers of the abstracted articles
denote antigens with literal symbols that have with little doubt been assigned
according to the simple—complex code, that is, each antigen has been defined
by a reaction with a single antibody species or monospecific reagent. (For
cell-mediated phenomena the language is different but the principle is the
same.)

Thus if antibodies (or killer cells) do not cross-react the choice of a
notational system is easy: an antigen and the corresponding antibody that
defines its presence are represented by a single letter. The antigen is X.
The antibody is anti-X. In this case the assignment of antigens to an
individual or sample is straightforward. If an individual reacts with anti-X,
anti-Y and anti-Z the individual must be of type XYZ. We therefore end
up with a labeling by the simple-complex code—attributing all complexity
to antigens by virtue of our notation. But the experimental evidence
summarized in Hirschfeld (1980) suggests that antibodies do cross-react.
Further, the exclusive use of the simple—complex code produces almost
bizarre ‘“‘genetic laws” which are completely explained when alternate
notation is used.

To summarize our argument so far, we have pointed out that, whatever
the complexities involved, it is necessary to refer to the antigens and
antibodies in immunogenetic systems by symbols. Monoclonal antibodies
ought to be the same, and denoted by the same symbol (not necessarily a
single letter). If single letters are used to symbolize these antibodies and
antigens are assigned letters to account for reactions (i.e. by the simple-
complex code) then this defines antigens. It must then be true, just by the
way we are using symbols to define things, that the same antibody can
never react with two different antigens. (If the antibody is said to define a
single antigenic specificity, antigenic determinant, etc., then we would say
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that the antibody can never react with two different antigenic specificities,
antigenic determinants, etc.) Notice that this is a way of using language.
We are using symbols in such a way that it is impossible for an antibody
to react with two different antigens. Notice that antigens and antibodies
are in a one-to-one correspondence by definition.

We use the term cross-reactivity (regardless of its other possible historic
uses) to refer to the opposite of the foregoing. That is, we say our symbolism
allows for cross-reactivity when the same antibody can react with antigens
denoted by different symbols. Note that this agrees with the definition in
Woodbury, Ciftan & Amos (1979).

3. Cross Reactivity and Symbolism

The first symbolic approach that did not preclude complexity in the
relation between antigens and antibodies was that of Hirschfeld (1965,
19726, 1975). Hirschfeld considered antigens as sets of more primitive
units called ants (for antigenic specificity) and antibodies as sets of more
primitive units called antis (for antibody specificity). Ants and antis are in
a one-to-one correspondence. An antigen and antibody react if they share
a specificity—that is, if some ant in the antigen corresponds to an anti in
the antibody. This is an example of labeling by the complex—complex code:
Each antigen is assigned labels from a set of all labels, each antibody is
assigned labels from the set, and the antigen and antibody react if they
have a label in common.

Hirschfeld was the first to point out the effect that a symbolic language
had on the way we see the immunogenetics described by the language.
Until recently all mathematical and statistical models and techniques were
directed as tools to uncover factors (antigens, say) that might account for
reactions in a data matrix. The world of immunogenetics was still to be
understood by assigning a single letter or label to operationally monospecific
reagents (the closest approach at the time to a reagent of monoclonal
antibodies) and then defining an antigen by its reaction with the reagent.
A sample that reacted with more than one reagent was considered complex,
that is, labelled with all the letters needed to account for reactions with
the various reagents. Thus the simple-complex code became part of the
way immunogenetics was conceptualized.

4. Cross-Reactivity and Mathematics—The Model

Early mathematical and statistical approaches to immunogenetics all
used a symbolism that did not permit cross-reactivity. For example, Elandt-
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Johnson (1968) denotes antigens with letters (e.g. A) and “their correspond-
ing antibodies” with barred letters (e.g. A). There is a tacit assumption of
a one-to-one correspondence between antigens and antibodies. Similarly
Suttle and Ciftan (1973) state, “Let...a;, i =1,..., n be n antigens and
a;,i=1,...,n be their corresponding antibodies”. The antigen/antibody
bipartite graph in Wohlgemuth (1975) was motivated by Suttle and Ciftan’s
approach and merely allowed for cross-reactivity in its use of symbols.
Extension of this work led to the Labeled Reaction Matrix (LRM) model
of Wohlgemuth (1976, 19784, 1979). It was shown that the LRM model
is equivalent to a three-fold Boolean factorization of a reaction matrix for
the first order immunogenetic systems defined in Wohlgemuth (1978a).
This latter article was motivated by an attempt to use mathematics as a
consistent language to describe immunogenetics instead of merely a tool.
We will now describe the model of the three-fold factorization and later
compare some other approaches with it.

The overwhelmingly predominant pattern of the genetics of histocom-
patibility and blood grouping is that of co-dominant alleles. Indeed, “well-
known’’ exceptions to this, such as the cis-trans effect in the Rh system,
may turn out after deeper investigation not to be exceptions at all. In
(Wohlgemuth, 1978a) a first-order abstract immunogenetic system is
defined as a model to cover this predominant genetic pattern. Second and
third order models are defined which allow for more genetic complexity,
such as dominance. Since most real world systems are of the first order
and since the possible exceptions may turn out to be only artifacts it is
reasonable to develop the first order models at the outset.

The most convenient description of a first order system is in terms of a
matrix product. For an illustration consider the following as our hypothetical
example. Let # be the set of individuals {1, 2, 3} each of which is labeled
by, i.e. has, some of the antigens a, b, c. This labeling or typing can be
given as a matrix € as in Fig. 1.

In our models antigens are defined by a panel &/ of antibodies using a
matrix that gives, for each antigen, the complete set of antibodies that

Antigens
a b ¢
1 1 0 1 Individual 1 has antigen(s) a, c.
Individuals 2 1 0o o0 Individual 2 has antigen a
3 10 1 0 Individual 3 has antigen b
(a) (b)

F1G. 1. The labeling matrix € of our hypothetical example. (a) € as a matrix; (b) € as a list.
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Antibodies Antibodies
a B Y a B8 y
a [t 0 o [ L—1
Antigens b |0 1 1 a b ¢
c lo o 1 Antigens
(a) {b)

F1G. 2. The definition matrix & of our example. (a) @ as a definition matrix; (b) & as a
(bipartite) graph.

react with the antigen. As part of our example consider the definition
matrix & of Fig. 2. For example, in £ antigen b reacts with antibodies 3
and y, while antibody B reacts only with antigen b. The definition matrix
@ is equivalent to and easily visualized as the antigen/antibody bipartite
graph given in Fig. 2(b), see (Wohlgemuth, 1975). Cross-reactivity is easily
seen by the edge connecting b and v. (As an aside for mathematicians note
that the group C3®S; mentioned in Suttle & Ciftan (1973) is the
automorphism group of this undirected bigraph with edge {b, v} deleted.)

The relation between individuals .# and antibodies & is given by a
labeling matrix ¢ which is the Boolean product of the matrices € and 9.
This matrix product is the same as the normal matrix product except that
we always take 1+1=1. The best introduction for the immunologist to
matrix notation and this product is probably found in (Wohlgemuth, 19785).
The matrix ¥ = € X9 is given in Fig. 3. The rule for determining ¥ is that,

4 € @D

a B v
1 {1 0 1
2 (1 0o 0 =
3 10 1 1

Fi1G. 3. The labeling matrix. ¢ =€ X 9.

00|
OO =R
o-—olm
N

[« ]
O =0
X
o o

WN =

for example, a 1 is found in row 3 column B because 8 reacts with some
antigen labeling individual 3; in general there is a 1 in row i, column j of
% if and only if individual i is labelled by some antigen recognized by
antibody j. In this case we say antibody j is a label for individual i so that
% is viewed as a labeling matrix.

In the serological application of our model a “‘reagent” is considered as
a combination of antibodies. In application to cell-mediated phenomena
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this is analogous to combinations of whatever factors (possibly cross-
reacting) recognize antigens. The importance of the distinction between
recognized and recognition factors will be brought out later in this paper.
The distinction between cell-mediated and serological recognition factors
is not important in our model and we will use serological language calling
these merely ‘““antibodies” and combinations used in testing ‘‘reagents”.
The particular combination of antibodies in some reagent is given by a
labeling matrix. The matrix &, part of our example, is given in Fig. 4.

Reagents
Reagent 1 has antibodies «a, 8

1 4
a |17 0 0 O Reagent 2 has antibodies 8, v
Antibodies g |1 1 0 1 Reagent 3 has antibody v
y 10 1 1 0 Reagent 4 has antibody 3

{a) {b)

FIG. 4. The labeling matrix &. (a) € as a matrix; (b) & as a list.

The example is completed by the computation of the reaction matrix R
as € X P x € which is given in Fig. 5.

R:
Reagents ExXDXE:
12 3 4 a bec a B vy 12 3 4
1 1110 1 101 a 100 a«|1 00O
Individuals 2 (1 0 0 0 = 2 |1 0 OXx b 01 1x (1101
3 111 11 3 1010 ¢ 0 01 vyl101 10

FIG. 5. The reaction matrix. R=¢x2 x &.

The matrix product gives the following rule for R: a 1 is seen in R
denoting a reaction between individual i and reagent j if and only if some
antigen labeling i is recognized by an antibody labeling j. The factorization
of R into € X% X & gives a labeling of the rows and columns of R with
antigens and antibodies and R together with the factorization is called a
“labeled reaction matrix”’. The problem of defining the basic entities
antigens and antibodies responsible for data as seen (in part) in a reaction
matrix R is equivalent to the problem of factoring R into three factors.
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5. Specificity

The point we wish to make now is that the three-fold matrix factorization
is general enough to incorporate the idea of specificity. The first abstract
approach to specificity was given by the letter codes of Hirschfeld (1975).
That these codes are equivalent to a two-fold factorization of a matrix is
shown in (Wohlgemuth, 19785b). This paper is easily read and there is no
need to reproduce the results here. Note that if the antigen/antibody
reactions given by a matrix (say @ of our example) are “explained” in
terms of specificity, this amounts to a factorization of the reaction matrix.
If, in the future, experimental techniques are adequate for determining
this additional set of factors, the factorization may prove useful. At this
time it is quite difficult just to identify antigens and antibodies in an unbiased
and unambiguous way. Note also that genes are another set of factors that
“label” individuals and code for antigens. Incorporating these too would
give a five-fold factorization. Hirschfeld (1980) lists 27 different words or
phrases used to describe factors that could be called antigenic specificities.
Since the matrix product is associative, it is possible to group those factors
not of interest together (see Wohlgemuth, 1978a, p. 507). In fact from a
mathematical perspective it makes no difference what names we give the
factors. The only thing that matters is the role that they play. Since the
two-fold matrix factorization is subsumed in a three-fold factorization
simply by assuming one of the relations involved to be a one-to-one
correspondence, the question is whether accounting for a reaction matrix
in terms of a single set of factors is adequate. We shall see that the
experimental technique of absorption makes the distinction between
recognized and recognition factors important. Hence at least a three-fold
factorization is needed.

A mathematical definition of specificity is given by Nau et al. (1978) and
is shown to be equivalent again to a two-fold factorization in (Wohlgemuth,
1979). As an example of the latter we can take the factorization of ¢

FIG. 6. The specificity cover corresponding to a factorization. (a) 4= € x 9 from Fig. 3.
(b) The specificity cover of 4.
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originally given in Fig. 3 and here reproduced in Fig. 6. Consider, a, b and
¢ in this context as ‘‘specificities” where 1, 2, 3 would now be considered
as distinct antigens and a, B, y distinct antibodies. An antigen and antibody
react if and only if they share a specificity. The specificities of the antigens
1, 2, 3 are given in terms of the (labeling) matrix €. The specificities of
the antibodies a, 3, y are given in terms of the labeling matrix 9.

Observe that the set of all rows (antigens) of ¥ labeled by specificity a
(i.e., 1 and 2) and the set of all columns (antibodies) of ¢ labeled by a
(i.e., @) form a submatrix of ¥ consisting of a solid block of 1’s. The same
is true for the submatrices defined by » and c. Further all 1’s in ¢ are
covered by these blocks of solid 1’s. Such a covering of a reaction matrix
is called a specificity covering (Nau et al., 1978).

Thus, explaining any one of the matrices in R = € X 2 x & by specificities,
either by Hirschfeld’s codes or by a specificity cover, is equivalent to a
further factorization of the matrix in question. There is therefore a lack of
meaningful distinction among the various sorts of “factors” as they are
used in the model. For example, in the model, rows (individuals) of R
could equally well be labeled by genes, antigens, antigenic determinants
or antigenic specificities. The name is not important to the model. (In a
second or third order system, however, the distinction between labeling
with genes and antigens must be maintained.) The fact that the superficially
different ways of defining specificity are all essentially the same but obtained
independently argues for the appropriateness of the matrix model which
subsumes them all.

6. Finding Factorizations

The practice of labeling operationally monospecific reagents or reagents
of monoclonal antibodies with a single letter and individuals or samples
with all letters needed to account for reactions (the simple-complex code)
has become the predominant symbolic “language” of immunogenetics.
Although, as we have stated before, this practice is not based on sound
evidence on the nature of antibodies and although its use leads to bizarre
results in some cases, it nevertheless has two very strong points in its favor.
It is easy to understand and it is easy to use. Mathematical approaches, if
they are to replace the traditional language, will have to be workable as
well as faithful to reality. If the unbiased way of symbolizing an
immunogenetic system involves a factorization then the way or ways of
obtaining this factorization needs to be studied.

Pioneering approaches, to using mathematics in immunogenetics, such
as Ciftan (1970), usually aimed at determining the number of antigens or
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factors needed to account for a reaction matrix R of data. Although we
have no expertise in statistics it would seem to us that the same is true for
the statistical approaches. For example Brown, Davis & Goodman (1970,
p. 703) state, “Our problem is first to determine how many antigens and
corresponding antibodies must be postulated”. (The precise effect that
assuming a one-to-one correspondence between antigens and antibodies
has on the statistics may be worth investigating.) This problem of finding
the smallest number of antigens needed to account for R is very complex.
For example we could ask the following question about factorizations: For
a given whole number n and a given R does there exist a factorization of
Rinvolving n antigens? This question falls into the category of NP-complete
problems—problems which are computationally intractable, or for which
there is really no computational approach better than a case by case
exhaustive search. For a discussion see (Nau et al., 1978). This reference
also contains results on the bounds of possible n (giving a “‘yes” answer)
for a given R. There are of course usually more pressing requirements for
the definitions of genes or antigens involved in a system than merely
minimizing the number required to account for a reaction matrix. Nau &
Woodbury (1977) provide a heuristic computer program for determining
labelings of R (with say antigens). This program is run interactively with
input from a biologist. Another example of heuristic approach is given in
the uncovering of the Ag and Rh labelings in (Wohlgemuth, 1978a).

If only R is available as data then, remarkably little can be said with
certainty about any factorization—two-fold or three-fold. What is needed
is to incorporate more information into the model/language. The second
part of this paper is aimed at precisely this. In the next section we will give
an example to show why a three-fold factorization is needed when absorp-
tion (or an equivalent technique for cell-mediated reactions) information
is included in the model.

7. Recognized and Recognition Factors

In the further development of the model, information on reagents is
incorporated. Recall that the matrix ¥ (Fig. 3) of our example, with its
original meaning, labels individuals with antibodies: a and vy label individual
1, a labels individual 2 and 8 and v label individual 3. Recall that to say,
a labels individual 1 is to say that o reacts with some antigen labeling
individual 1. Consider the reagent 2 anti-1, i.e., (individual 2) anti-
(individual 1). (Such known combinations for producing reagents occur in
working with mouse strains where individuals 1 and 2 stand for two different
but known strains). 2 anti-1 is a reagent obtained by challenging individual
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2 with cells from individual 1 and would normally, and in our model,
contain only antibodies that recognize cells in individual 1 but do not react
with cells from individual 2. Thus the only antibody in our example that
could be contained in reagent 2 anti-1 is y; 8 does not recognize any
antigen in 1 and a recognizes an antigen in 2 itself. Under any conditions
assuring us of immunocompetence, 2 anti-1 would be {y}. In a reaction
matrix then, 2 anti-1 should react with individuals 1 and 3 but not with 2.

In models incorporating absorption (Nau et al., 1978; Denniston, 1976)
it is taken that specificities subtract. Thus 2 anti-1 would be labeled with
all those specificities of individual 1 minus the specificities of individual 2.
If we take antibodies or antibody labels as specificity, this agrees with what
we have seen so far: all antibody labels of individual 1 = {«, y}; all antibody
labels of individual 2 ={a}; and {a, y}—{a}={y} =2 anti-1.

Notice, however, that we cannot take antigen labels as specificities in
this sense; all antigen labels of 1={a, c}, all antigen labels of 2 ={a}, and
{a, c}—{a}={c}. But reagent 2 anti-1 cannot be labeled with {c} since this
would provide no explanation for the reaction of 2 anti-1 with individual
3. The only antigen labeling individual 3 is & (recall figure 3). Since 2
anti-1 ={y} and vy does react with b we see the need for labeling reagents
with antibodies or recognition factors when we take absorption of stimu-
lator/responder information into account.

This makes good physical sense. What is absorbed out? Antibodies,
entities that play the role of recognition factors. Thus when we incorporate
absorption information or its equivalent, it is important to make a distinction
between recognized (antigen) factors and recognition factors. That is, a
three-fold factorization R = € X 2 X & of a reaction matrix is the important
form of a model of a first order immunogenetic system.

As we pointed out in a previous section it is not important from a
mathematical point of view what we call recognition factors or recognized
factors.

We note that the work of Sheehy & Denniston (1980) and Denniston
& Sheehy (1980) also uses known stimulator/responder combinations to
determine factors involved in mixed lymphocyte culture testing. This work
is fundamentally different from our work in that it draws inferences about
recognized factors from information on whether a given stimulator-
responder combination can produce any recognition factor. Factors are not
subtracted.

8. Antigens, Antibodies and Genes

The abstract immunogenetic system of Wohlgemuth (1978a) is an
attempt to provide a context in which to examine the relationships between
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the symbols used to represent genes, antigens, antibodies and specificities.
This model is general enough to include all symbolic descriptions in
immunogenetics as special cases. Earlier, Hirschfeld (1975) had related
genes, antigens, and antibodies by a double use of the complex—-complex
code. Thus genes are considered as sets of more primitive units called aggs.
Aggs, ants, and antis are all in a one-to-one correspondence whereas the
correspondence between genes and antigens is no longer one-to-one but
is determined by the complex—complex code. Similarly the correspondence
between antigens and antibodies is determined by another use of the
complex—complex code. This approach does place some restriction on the
“second” use of the code however since the determination of antigens as
sets of ants is accomplished by one use of the code (say to relate antigens
to antibodies) and thus we are not free to redefine antigens in terms of
ants in the “second’ used of the code (to relate genes and antigens.) Of
course there is no present evidence to suggest that this model of Hirshfeld
is not adequate to cover actual immunogenetic systems. But nevertheless
this does introduce a bias in the language. That is, it puts some prior
constraint on the possible relations between genes and antigens and anti-
bodies.

9. Summary

Immunogenetics deals with antigens and genes which are denoted by
letter symbols. The practice of always identifying a particular antigen by
an operationally monospecific reagent or reagent of monoclonal antibodies
leads to an assignment of letter symbols by what is called the simple-
complex code. The use of this code in cases where there is cross-reactivity
can result in apparent genetic laws which in reality are no more than
artifacts of the notational system. Thus cross-reactivity is more than just
an annoyance. Its existence has been proven and necessitates a descriptive
language for immunogenetics that is more general than the simple-complex
code. There have been several independently developed symbolic and
mathematical approaches to providing this descriptive language. All of
these are subsumed in a model called an abstract immunogenetic system
and are equivalent (for a first order system) to a Boolean matrix factoriz-
ation. If the only experimental results available to identify antigens consist
of a table or reaction matrix, then a two-fold factorization has enough
generality to describe the factors involved. These factors may be called
specificities, antigens, antibodies or even genes. If a reaction matrix is the
only data available there is no reason to expect that the factors involved
in the two-fold factorization correspond to one rather than another of these
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names. There are an enormous number of two-fold factorizations—some
identifying genes, some antibodies, etc., and some having no physical
counterpart whatever.

If absorption information is available, a distinction must be made between
recognized factors and recognition factors. Symbols assigned to recognition
factors subtract in correspondence with absorption data but the same is
not true (due to cross-reactivity) of recognized factors. Thus a three-fold
factorization is the important form of a descriptive language when absorp-
tion information is incorporated in the data. A precise mathematical con-
nection between absorption information and the factorization is given in
the second part of this paper.
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