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In two recent papers the authors introduced some new approaches to the problem of modeling
the phenomena underlying immunological reaction tests. These approaches allow one to easily
construct the best possible models for a given amount of immunological test data. In the first
paper the authors used a purely Boolean approach, i.e., it was assumed that the experimenter
signified whether or not a reaction occurred in a given test. In the second paper the authors
assumed that the relative strengths of the reactions were available as data for the modeling
process. They showed that in this case strictly better models could be constructed. This paper
generalizes the approaches taken in the first two papers and provides a unified approach to this
whole subject. Many of the results, e.g., the ability to construct the best model, of the first two
papers hold in this more general setting. Moreover, this generalization allows one to assess the
tradeoffs involved in using data on the relative strengths of reactions. In particular, we see that
using relative strengths is equivalent to using an additional intersection factor in a strictly Boolean
approach. This intersection factor it turns out, can be obtained experimentally by using elution
in addition to the absorption involved in the first two papers. Finally, the duality between
fragments and cofragments becomes apparent using this approach.

1. Introduction

Recently, there have been a number of papers [1-10] written suggesting a variety
of ways of modeling immunological reaction testing. The authors have put forward
some suggestions [1,2,9,10] which avoid some of the ambiguity associated with
other approaches. Biological justification for the mathematics involved in [1 and 9]
is given in [2 and 10]. The present paper analyzes more deeply the mathematics
involved in [l and 3] and gives a deeper understanding of the tradeoffs involved in
using the relative strengths of reactions as input data.

The basic question this paper and [1 and 9] seek to answer is how to discover a
binary relation which is observed only indirectly through reaction tests. The next
several paragraphs recall some of the definitions and conventions of [1 and 9].
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Throughout this paper G will denote the binary relation between the set of indi-
viduals, 4 and the set of antibodies, ./, defined by iGa iff i has some antigen
recognized by a. G shall be called the fundamental relation. If the reader is un-
familiar with immunology, he need only assume that we are given a binary relation
G between two sets fand « G is the relation we seek to reconstruct from the data
we are given. The exact nature of this data will be described in greater detail below.

Conventions

The following conventions will be used throughout this paper.

(a) Iff means if and only if.

(b) If n is an integer, n={1,...,n}.

(c) If X is a set and y an element, X+y denotes XU { ¥} and X—y denotes
X-{»}.

(d) If S is a set, |S| denotes its cardinality and #(S) its power set.

() f BCXXxYand SCX (TCY), thenSB={ye Y]xBy for some xe S} (BT =
{xeX |xBy for some yeT}). For xe X (y€Y) we write xB (By) instead of {x}B
(B{ y}). Thus, iG is the set of all antibodies that recognize some antigen possessed
by individual i, and Ga is the set of all individuals possessing some antigen recognized
by a.

(f) f BcXxYand SCX [TCY], then B-S [B~T] is just BN({(X-S)XY)
[BN(X x (Y -T))]. For singleton sets, we omit the set braces as in (e) above.

(g) To avoid trivialities and uninteresting cases, we assume that Ga#%, .# for all
a€ o, iG#0, « for all ie 4 and Ga+ Gb for all distinct a, b in

The goal of the techniques discussed here and in other papers is to uncover the
relation G from the results of reaction tests which are given by the relation G* which
will be defined shortly. In general, G* is not available in its entirety and any tech-
nique having practical use must have the ability to extract as much information as
possible from parts of G*. This additional problem will also be discussed in this
paper.

Definition 1.1. Let G C .# X & be as above. The reaction relation associated with G,
denoted by G*, is a binary relation between subsets of .# defined by TG*S iff
(,.r IGZSG. For integers j and k, G*(j,k) shall denote {(T;S)eG*||T|=<},
IS|<k}. O

Note that iM(G, w)(J, S) in the notation of [1,2,9 and 10] iff {7, j}G*S. Thus G*
generalizes the concept of reaction relation of [1,2,9 and 10].

Notation. For S, T C 4 A(T, S) shall denote ﬂ,. riG~SG. Here we take ﬂier G=J
if T=0 and SG =8 if S=0. Note ATS)={a|TcGacs~S}. O

Thus elements of A(7, S) are obtained as intersections of rows of G (indexed by
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T) minus unions of rows of G (indexed by S) and TG*S iff A(T; S)#0. The bio-
logical problem of determining G from systematically taken data described in [1,9]
translates into the problem of determining a binary relation given whether certain
row intersections minus row unions are empty or not.

2. General detectability

The concept of detectability introduced in this section generalizes the concepts of
detectability in [1] and that of fc-detectability in [9]. Basically, an antibody is de-
tectable iff its absence changes G*. The following is a formal definition of this
concept.

Definition2.1. Anantibody a € «/ is (J, k)-detectableif (G—a)*(j, k)= G*(j, k). O

Theorem 2.2. An antibody a is (J, k)-detectable iff there exist T, S C J such that
IT|<Jj, |S|<k and {a} =A(T,S).

Proof. Obvious. [

Theorem 2.3. An antibody a is (j, |«/|)-undetectable iff for all T ¢ Ga with |T|<},
there exists b e o such that TC GbC Ga. Thus Ga is the union of the Gb. (Such a
union is called an undetectable union.)

Proof. Necessity. Let TC Ga be such that |T|<j and let § be #—Ga. Then
a€ A(T;S). Since a is (J,|#|)-undetectable, it follows from Theorem 2.2 that there
exists beA(T,S) with b#a. Since beA(T;S), TCGb and GbNS=0. Thus
T ¢ GbC Ga since Gb+Ga.

Sufficiency. Suppose a is (J, |#|)-detectable, i.e., by Theorem 2.2, there exist
T,S C|#| with |T| <j and {a} = A(T, S). Pick b with T ¢ GbC Ga. Clearly be A(T; S)
which is a contradiction. [J

Note that (2, k)-detectability is simply the k-detectability of [1]. In particular,
Theorems 2.2 and 2.3 generalize Theorem 3(b), (¢) of [1]. In fact, all the results in
Section III of [1] generalize in the same way, but these generalizations shall not be
stated explicitly. In the next section, it will be shown that k-fc-detectability of [9]
corresponds to (3, k)-detectability.

3. Fragments and cofragments

In [1] fragments were defined from the Boolean reaction relation G*(2, k) and
used to calculate information about G. In [9] cofragments were defined by taking
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relative reaction strength into account and both fragments and cofragments were
used to calculate information about G. In our more general present setting theorem
3 of [9] furnishes a good approach to the definition of fragments and cofragments.

Definition 3.1. Let 7,S C 4 Define F(7,S) to be ﬂaw(m) Ga and C(T,S) to be
UaE axs) Ga- The F(T,S)’s are called fragments and the C(T,S8)’s are called co-
Jragments. If A(T,S)=0, F(T,8)=7 and C(T,S)=0. If needed for clarity, the
fundamental relation used to derive a given fragment or cofragment will be added
to the symbols to yield F(7;S,G) and C((T, S, G) respectively. []

The k-fragments and k-cofragments of [1] and [9] result from restricting the
cardinality of T to be 2 and the cardinality of S to be <k — 1. The following theorem
develops the properties of fragments and cofragments in greater detail and shows
their duality more clearly. ’

Theorem 3.2. Let T and S be subsets of 4. Then the following are true.
(@) TCFK(T,S).
(b) F(T,S)={ie s | ~TG*S+1)}.
(©) C(T;S)cs-S.
(d) C(T;S)={ie s | (T+1)G*S}.

Proof. (a) If A(7,S5)=0, the result is obvious. Otherwise, let a€A(T;S), i.e.,
T € Ga. Thus T CF(T, S).

(b) Note that ie F(T,S) iff iG 2 A(T, S) iff ~TG*(S+1).

(©) If ie S, iGN AT, S)=0, which means that i¢ C(7,S).

(d) Note that ie C(T,S) iff iGN A(T, S)+#0 iff (T+i)G*S. U

Thus both fragments and cofragments can be calculated directly from G* without
the need for using reaction strengths as in the original definitions [9]. Theorem 3.2
shows that in order to calculate the k-cofragments of [9] from G* one needs to be
able to take intersections of three sets. Some biological contexts necessitate the use
of relative reaction strengths rather than intersections of 3-sets as suggested by
Theorem 3.2. It will be seen that the theory developed in [9] is essentially equivalent
to the Boolean theory derived from G*(3, k) and it turns out that there is an experi-
mental technique (elution) which, when available, can fully utilize the theory derived
from G*(h, k) for h=3.

The following definition separates the two notions intertwined in the concept of
fragment-cofragment undetectability which was introduced in [9].

Definition 3.3. An antibody a is called (J, k)-f-undetectable or (j, k)-fragment-
undetectable if the fragments F(T, S, G) and F(T, S, G — a) are equal for all 7, S with
|T| </ and |S|<k. Similarly, a is called (/, k)-c-undetectable or (j, k)-cofragment-
undetectable if the cofragments C(T; S, G) and C(T,S,G—a) are equal for all T, S
with |T|<j and |S|<k. [J
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Theorem 3.4 relates all the various kinds of detectability and allows us to deter-
mine precisely the various trade offs involved.

Theorem 3.4. Let q be an antibody and j, k nonnegative integers. Then the following
are equivalent:

(1) a is (J, k+1)-c-detectable,

2) a is (j+1,k)-f-detectable,

() ais (j+1,k+1)-detectable.

Proof. The first step is to show that (1) implies (3). If (1) holds, there exist 7, S with
IT|<Jj, |S|<k+1 and C(T,S,G)#C(T,S,G—a). Since the two cofragments are
unequal, the first one is a proper superset of the second. Thus there exists an element
yeC(T,S,G)—C(T, S, G—a). This means that ae A(T; S, G), y€ Ga and y ¢ Gb for
all b e A(T,S,G—a)=A(T,S,G) —a. Thus A(T; S, G) = {a} and (3) holds by Theorem
2.2.

The next step is to show that (2) implies (3). If (2) holds, there exist 7, S with
IT|<j+1, |S|=k and F(T;S,G)CF(T,S,G~a). Proceeding as before, pick
yeF(T,S,G-a)—F(T,S,G). This means that a € A(T, S, G), y ¢ Ga but y € Gb for all
b€ A(T,S,G—0)=A(T,S)—a. But this implies that &(7;S+y,G)={a} holds by
Theorem 2.2.

The final step is to show that (3) implies (1) and (2). If (3) holds, there exist ;.S
with |T|<j+1, |S|<k+1 and A(T,S,G)={a}. If T=0, by our conventions,
C(T,S,G)=Ga#0=C(T,S,G—a) and (1) holds trivially. If T+#0, then for each
yeT, ye C(T-1y,S, G) since a € A(T, S, G) implies ye Ga ¢ C(T -, §, G). However,
it is impossible for y e C(T—y, S, G —a), since this would imply the existence of an
antibody b, distinct from a which belongs to A(T-», S, G —a) and for which y € Gb.
But this would imply that b€ A(T, S, G) contradicting our initial assumption. Thus
(1) holds again.

Similarly, if S=0, |S|<k, F(T,S,G)=Ga#s=F(T,S,G—qa) and (2) holds
trivially. On the other hand, if S+, then for each yeS, y¢F(T,S -y, G) since
a€ A(T,S,G) implies y¢ Ga2 F(T,S—y,G). However, it must be true that
yeF(T,S -y, G—a), since the contrary implies the existence of an antibody, b, dis-
tinct from a which belongs to 4(7; S —y, G —a) and for which y ¢ Gb. But this would
imply that beA(T,S,G) contradicting our initial assumption. Thus (2) holds
again. [

4. Recovering the fundamental relation

The purpose of this paper and other work in this area is to show how G may be
recovered from G* or parts of G*. As the following theorem shows, it is very easy
to recover G from all of G*. As in [1] we can consider G as a relation from J to
#(#) by identifying an antibody with its reaction range.
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Theorem 4.1. Let I'={XC | for some T,SC % X=F(T,8)=C(T,S)}. Then
I'={Ga | a€ ¥}, i.e., the elements of I are just the columns of G. (Recall Ga# Ga
if a#b.) Thus the relation H={(i,X) e]xl"| i€ X} is identical with G.

Proof. Let ae .« The first thing to note is that A(Ga, #— Ga)={a}. To see this,
assume b e A(Ga, #— Ga). Since beiG for all i e Ga, Ga < Gb. Since b¢iG for all
i€ S~ Ga, Gb C Ga. Thus Gb=Ga and b =aqa by our initial set of assumptions. From
this, it follows easily that Ga=F(Ga, S — Ga) = C(Ga, £ — Ga).

Conversely if X=F(T,S)=C(T,S), then A(7,S) cannot be empty. Suppose
ae AT, S). Since X=F(T,S)CGacC(T,8)=X, X=Ga. U

Unfortunately, G*is usually unavailable in its entirety. In fact, even if it were bio-
logically feasible to generate all of the values of G*, it is clear that there would rarely
be enough time or resources to compute the 22 entries. Thus, the question of
most practical interest is determining the ‘best’ answer given a subeset of G*. The
following definition introduces some terms and concepts which generalize the ideas
dealing with solutions in [1,2,9,10].

Definition 4.2, Let W c P(#)—{0,#} and RC P(S) X P(~).

(@) The R-restriction of G*, is simply RNG*, i.e., X(RNG*)Y iff XRY and
XG*Y.

(b) The fundamental relation generated by W, Gy C # X W, is defined by iGp X
iff i€ X. Note that the elements of W play the role of antibodies.

(c) The reaction relation generated by W is simply Gjy. Gjy NR and G} (j, k)
have the same meaning as before.

(d) The G, R-solution space, denoted by Sol(G,R), is the set {Wc P(S)—
{8, 7} | G N R=G*N R}. Members of Sol(G, R) are referred to as G, R-solutions.
Here Sol(G, j, k) means the obvious thing, i.e., G*(j, k) replaces G*NR in the
previous sentence. [

Sol(G, R) is thus the set of all solutions to the problem of determining G from the
restricted set of data RN G*. Note that the above definitions using R reduce to the
definitions using the indices j and k if R is assumed to be {(X, Y)||X|=</,|Y|<k}.
The greater generality resulting from the use of R is useful in those cases where data
exists only in irregular forms. Furthermore, the proofs of the theorems do not suffer
from an increase in complexity, because of an increase in the generality. Analogous
to the results in earlier papers, G, R-solution spaces are closed under unions and con-
sequently contain largest elements.

Theorem 4.3. Let W, W, e Sol(G, R), then W;U W, e Sol(G, R).

Proof. If 7, S C # are such that T(G*N R)S, then T(Gy, N R)S. Since W, ¢ W, U W,
it is clear that T(Gi',‘,lﬂR)S implies T(G,";‘,IUWZOR)S.
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Conversely, if T(va,u w,R)S, (I,S)ER, and there exists X € W; U W, such that
TcX and SNX=0. Since Xe W;UW,, XeW, or XeW,, then T(Gy, NR)S.
Since G NR=G*NR, T(G*NR)S. The argument is identical if XeW,. 0

Corollary 4.4. Sol(G, R) contains a largest solution, denoted Z(G, R), which is the
union of all elements of Sol(G,R). [

Theorem 4.5. Sol(G, |.#|,|.#]) contains exactly one element: {Ga|ae «/}.

Proof. Let WeSol(G,|s],|#|) and X e W. Note that XGj(f—X) and thus
XG*(#-X), i.e., there exists aeA(X, #—X). Thus XC Ga and 4~ XC S -Ga,
whence Ga=X. This means that W C {Ga|ae «}.

The reverse inclusion follows from the fact that (Ga)G*(#—Ga) and thus
(Ga)G(F— Ga). This means that there exists X € W such that GaC X and
F—-Gacs~X, i.e.,, Ga=X. Thus W={Galaed}. O

Theorems 4.1 and 4.5 show that no antibody is undetectable in the sense of being
(4], |#])-undetectable. Thus the topic of removing undetectables from elements of
solutions is more involved and not terribly useful. The final result in the paper is a
description of one element of Sol(G, R). This partially generalizes Theorem 15 of [9].

Theorem 4.6. Let 8(G,R)={X C #| for some(T,S)eR, F(T,S)c Xc C(T,S)}, and
letZ'(G,R)=0(G,R)— { X € 0(G, R)| for some(T,S)e R, TC X C #— S but ~TG*S}.
Then X'(G, R) € Sol(G, R). Furthermore, Sol(G, |4, |#| € 2'(G,R).

Proof. Let (7,S)eR.

First, suppose TG*S, i.e., there exists a€ A(T,S). This means that F(T,5)C
Gac C(T,S) and Gae8(G,R). Also if T'CGac #— S’ for some (T,5’)eR then
T'G*S’ so that Gae 2'(G,R) and TG¥ G g)S.

Second, suppose " TG*S but TG, r)S: i.€., there exists X € 2"(G, R) such that
TcXcs—S but ~TG*S. However, this contradicts the definition of 2'(G, R).
Thus Z'(G,R) e Sol(G,R). O
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