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1 Introduction

An interesting fact that is of great practical importance is that finite lattices
have an associate poset, called the poset of irreducibles that acts much like the
basis of a vector space. The poset of irreducibles of a finite lattice provides
a compact representation of the lattice from which many of the properties of
the lattice can be deduced easily. This paper is dedicated to explaining the
poset of irreducibles and providing some examples of its usefulness. Proofs
are omitted except for the very simple ones, but all results can be found in the
references located at the end of this paper. These results can be extended to
infinite lattices, but we will not discuss such extensions here. The interested
reader is invited to read * and ® for more details. 2 provides additional
historical and motivational material, which might be of interest to the reader.

The poset of irreducibles generalizes the construction used by Garrett
Birkhoff 2 to provide a representation for finite distributive lattices. Birkhoff
proved that a distributive lattice, L, is isomorphic to the lattice of all closed
from below subsets of the poset consisting of the join-irreducible elements
of L in the induced order. An interesting extension of this result is that
the connected components of the poset of join-irreducibles correspond to the
posets of join-irreducibles of the Cartesian factors of a lattice and that the

automorphism group of the poset of join-irreducibles is isomorphic to the au-.

tomorphism group of the lattice. Since in a distributive lattices the poset of
meet-irreducibles is isomorphic to the poset of join-irreducibles. It is suffi-
cient to work with either the join-irreducibles or meet-irreducibles. Figure 1
illustrates Birkhofl’s Theorem.

Definition 1 A join-irreducible element, j, of a lattice, L, is has the property
that 3 = sup S, where S is a subset of L, implies that j is in S. a
The bottom element of a lattice is never join-irreducible since it is the
join of the empty set. There is a dual definition of meet-irreducible.
The focus on irreducibles is a key aspect of a combinatorial approach
to lattice theory. In this approach, one focuses on things such as the Hasse
diagram of a lattice rather than on algebraic identities satisfied by elements of
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the lattice. Especially satisfying, are results that connect algebraic properties
to combinatorial properties.
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Figure 1. An Illustration of Birkhoff’s Theorem

One example of such a theorem is a result that I discovered in my thesis
(4), but which I later found had been dlscovered a decade earlier by Avann
(*). The result is the following:
Theorem 1 (Avann, Markowsky)

A finite lattice is distributive if and only if

1. The number of meet-irreducibles equals the length of the lattice.
2. The number of join-irreducibles equals the length of the lattice.

8. The lattice satisfies the Jordan-Dedekind chain condition. ]

Figure 2 shows three simple lattices that illustrate the graphical test for
distributivity. In the first case, the lattice satisfies the Jordan-Dedekind chain
condition, but both the number of join-irreducibles and the number of meet-
irreducibles are greater than the length of the lattice. In the second case, the
lattice has more join-irreducibles than either the number of meet-irreducibles
or the length of the lattice. In the third case, the lattice satisfies all the
requirements and is distributive.
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Too Short. Too Many Join-Irreducibles.

Figure 2. Examples of the Graphical Test for Distributivity

2 The Poset of Irreducibles

It seems clear that for general lattices both the join-irreducible and meet-
irreducible elements need to be considered. Since elements can be both join-
irreducible and meet-irreducible, it seems reasonable to consider a bipartite
graph where an element can appear twice if necessary. One natural construc-
tion is to put the meet-irreducibles in a row over a row of join-irreducibles
and connect an element in the top row to an element in the bottom row if
the top element is > the element in the bottom row. Interestingly enough, a
more useful construction is to connect the top element to the bottom element
iff the top element is # the bottom element. The big advantage of the second
construction over the first, is that the Cartesian factors of a lattice can be
read directly from the associated poset, because the connected components of
the poset (when the poset is considered a graph) correspond to the Cartesian
factors of the lattice.

Figure 3 shows the lattice M3, the induced order on the irreducibles, a
bipartite graph using the induced order to relate the two rows of irreducibles,
and finally the complementary order on the irreducibles. The induced order
has the undesirable property that it splits into 3 connected components while
the lattice does not have direct factors. The complementary order, on the
other hand, has only a single connected component.

Figure 4 shows the same constructions applied to the Boolean algebra
with 3 atoms. Note that in this case the lattice has 3 direct factors, while
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Figure 3. Illustration of the Poset of Irreducibles and Related Constructions

the bipartite directed graph (bidigraph for short) that uses the induced order
consists of only one connected component. On the other hand, the bidigraph
derived from the complementary order has 3 connected components.

Definition 2 Given a finite lattice L, the poset of irreducibles, P(L), is the
poset formed by putting all the join-irreducibles of P(L) in a row and then
placing all the meet-irreducibles in a row above the join-irreducibles, and or-
dering them as follows. In P(L), a meet-irreducible element, m, is above a
join-irreducible element, j, iff m # j in L.

The Poset of Irreducibles was introduced in my thesis in 1972-73 4, and
developed in a series of papers published from 1973 through 1994. In 1982
Wille 14in a paper entitled Restructuring Lattice Theory introduced the terms
concept lattices and context. A context is the same thing as the bipartite
poset of irreducibles discussed above, but with the induced order. As noted
earlier this construction does not make evident the Cartesian factorization
of a lattice, but is simply the dual of the Poset of Irreducibles construction.
Even though Wille and his school have been aware of my work on the Poset
of Irreducibles since 1973 they have not acknowledged it in their work.

The technique for recovering a lattice from its poset of irreducibles is
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Figure 4. Illustration of the Poset of Irreducibles and Related Constructions

fairly straightforward:

1. For each element on the bottom row, form the set of all elements in the
top row that are connected to it.

2. The set of unions of all such sets (we include the empty set as the empty
union) ordered by set inclusion is isomorphic to the original lattice.

Figure 5 shows the basic reconstruction process. Note that we use the ab-
breviation Rep to represent the set of meet-irreducibles linked to a particular
join-irreducible on the bottom row.

The calculations of the three Reps in Figure 5 is straightforward as is the
construction of all unions. It is easy to see that we recover the original lattice
in this way. Figure 6 shows the same construction for the 3-atom Boolean
algebra.

Reconstruction can also be done from different perspectives such as Galois
connections and the lattice of maximal antichains. For details see 6. There
has been some interesting work done in the area of lattice reconstruction by
Morvan and Nourine 3, and by Jourdan, Rampon and Jard 3.
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Figure 6. Reconstructing the Boolean Algebra

To summarize the preceding discussion we note that the Poset of Irre-
ducibles of a lattice L, denoted by P(L), is possibly a compact representation
of a lattice. In my thesis I proved a generalized form of the following result

‘ which can be used with some infinite lattices.

Theorem 2 (Markowsky * and ®) Given a finite lattice L. Its poset of irre-
ducibles has the following properties:

1. L can be easily reconstructed from P(L) using the union construction.
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2. The connected components of P(L) are the posets of irreducibles of the
direct factor lattices whose product is L.

3. The group of all order preserving automorphisms of L is isomorphic to
the group of all order preserving automorphisms of P(L). O

In general, P(L) is significantly smaller than L. In the case of Boolean
algebras, P(L) is exponentially smaller than L.

Throughout this we will use J(L) to denote the set of join-irreducibles of
a lattice L, and M(L) to denote the set of meet-irreducibles of L.

Let’s consider one more example. Figure 7 shows that P(L) makes it easy
to spot the fact that a lattice can be factored directly and that the factors
can be computed directly from the components of P(L).

€ d a b c
P(L)
a
L
Factors

Figure 7. A more complicated example of the Poset of Irreducibles

Notice that since the poset of irreducibles of each Cartesian component
of the lattice is given by a connected component of the poset of irreducibles
of the lattice, the factors are themselves not further reducible.

Another interesting question to consider is which bidigraphs (bipartite
digraphs) can be P(L) for some lattice L. To give this condition we just need
to extend the definition of Rep for any bidigraph. In particular, if S is set of
nodes of the bidigraph, G = (X, Y, Arcs), let Rep(S) = all nodes that are
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linked in G to some node in S. Now we can characterize which bidigraphs are
P(L) for some lattice L .

Theorem 3 (Markowsky *, ®) A bidigraph G is P(L) for some lattice L iff
the following condition holds for each node n: .
Rep(n) = Rep(S) can only happen if n is in S. o

3 Applications

Looking at lattices from the point of view of their posets of irredl'xcibles,
provides another approach to solving problems and better .underst.andmg the
features of the lattices in question. The following subsections briefly sketch
some of the instances where focusing on the poset of irreducibles has led to
some key insights.

8.1 Locally Distributive Lattices

Earlier, a simple test for distributivity was mentioned. A §Hg.l1t nixodiﬁca.tion
of this result provides a simple characterization of locally distributive lattices.
In particular, we get the following theorem.

Theorem 4 (Avann !, Greene and Markowsky '°) A finite lattice is upper
(lower) locally distributive iff

1. It is Jordan-Dedekind
2. Its meet-rank (join-rank) = its length a
Note that the meet-rank (join-rank) of a lattice is simply the number of

meet-irreducible (join-irreducible) elements in the lattice.

3.2 Factor-Union Representation

Associated with the poset of irreducibles are some theorems that provide some
information about mappings between lattices. A very fundamental theorem
is the following.

Theorem 5 (Markowsky*, 5,6, °)

1. If f : Ly — Ly is join-preserving then |M(L1)] < [M (L2)|.

2. The map f : L — 2M(E) given by: f(a) = {meM(L)|la < m} preserves
sups.
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3. The mapping f in the preceding item is optimal in the sense that no
smaller Boolean algebra can be found to represent L with unions repre-
senting sups.

0

The last part of the preceding theorem demonstrates that the poset of
irreducibles is the smallest construction that can be used to represent the
lattice using unions of sets.

The preceding theorem can be used to develop an algorithm for determin-
ing if a genetic system can be described as a union of different factors. Systems
that can be described in such a manner are called factor-union systems.

Suppose that a group of individuals displays genetic variations, and you
would like to understand how genes can carry traits. One simple model of
such behavior represents traits as being made from unions of simpler traits.
For example, consider a simplified eye-color model in which there are only blue
eyes and brown eyes. Further, suppose that brown eye genes are dominant
over blue eye genes.

Recall that a phenotype is a type that can be objectively recognized such
as brown-eye vs. blue-eye. Also, a genotype is a particular combination of
genes. In general, multiple genotypes might produce the same phenotype. In
the system under discussion the phenotype of having brown eyes consists of the
3 genotypes: (brown, brown), (brown, blue), and (blue, brown). On the other
hand, the genotype (blue, blue) is the only one in the blue eye phenotype.
The ordered pairs represent the combination of genes that the individual gets
from each parent. A simple factor-union model for-this eye color system is
the following: assume that having blue eyes is the default and requires no
particular trait, whereas a brown eye-color gene contains a single factor x,
which colors eyes brown if it is present. In this case, the three genotypes
(brown, brown), (brown, blue) and (blue, brown) will produce an individual
with brown eyes, while (blue,blue) will produce a blue-eyed individual.

To determine whether a factor-union representation in possible for some
system of phenotypes, we must order phenotypes based on the assumption
that the system in question is a factor-union system. If it is indeed a factor-
union system, then the algorithm will eventually produce a lattice in which
unions represent sups. If the system in question is not a factor-union system,
the algorithm eventually produce a cycle of distinct elements such a j b j a,
which is impossible in a poset. For the details of this construction see 2.

If no cycles appear while the order is being completed, then the algorithm
produces a lattice and any join-representation of that lattice is a factor-union
representation of the original system. By the preceding theorem, a minimal

m

factor-union representation is constructed using the meet-irreducibles of the
generated lattice. Note that the minimal representation need not be the
correct biological model. In fact, just because a factor-union representation
can be found for a genetic system one cannot simply assume that it is the
correct explanation. This determination must be made on a biological basis,
but the results here suggest some starting points.

The results in ® apply to multi-locus systems as well as single-locus sys-
tems.

8.8 Subprojective Lattices and Projective Geometry

A variety of people have developed axioms systems for projective geometries.
Initially, all of the axiom systems proposed contained a numerical parameter,
and hence were unsuitable for infinite dimensional projective geometries. Bas-
ing their work on the poset of irreducibles, Markowsky and Petrich * produced
a purely point and hyperplane, numerical-parameter-free, self-dual axiomati-
zation of subprojective lattices. In finite dimensions, subprojective lattices are
also projective, so this axiomatization gives a parameter-free parametrization
of finite dimensional projective geometries. This work also provided condi-
tions under which subprojective lattices became projective.

8.4 Ezxtremal Lattices

The Jordan-Dedekind chain condition is a strong condition to require. As
a result of the prompting of Garrett Birkhoff, I investigated what can be
said in the absence of the Jordan-Dedekind chain condition, and focused in
particular on the case where the length of a lattice matched its join-rank
and/or its meet-rank. It is clear that every element that covers another must
have at least one additional join-irreducible below it and at least one fewer
meet-irreducible above it than the element it covers. Thus, for any lattice L,
length(L) < [J(L)], IM(L)|.

Definition 3 1. A lattice, L, is called join-extremal iff length(L) = |J(L)|.

2. A lattice, L, is called meet-extremal iff length(L) = |M(L)|.

3. A lattice, L, is called extremal iff length(L) = |J(L)| = |M(L)|- o
The various types of extremal lattices have many interesting properties.
One simple property is given by the following theorem.

Theorem 8 (Markowsky°). A Cartesian product of lattices is (join-, meet-)
extremal iff each factor is (join-, meet-) extremal. a
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The term p-eztremal (p = the empty string, “join”, “meet”) is used to refer
to any of the three types of extremal lattices. Just be sure to make the same
substitution for the prefix p in the same context. P-extremal lattices have
many interesting properties and generalize decompositions of finite Boolean
algebras. An interesting fact is that ideals of join-extremal lattices are join-
extremal, and dual ideals of meet-extremal lattices are meet-extremal.

Another interesting fact about p-extremal lattices is that they cannot
be categorized algebraically. Furthermore, the family of p-extremal lattices
includes many interesting lattice families including distributive lattices, locally
distributive lattice, and Tamari associativity lattices (see below). The first
step to proving some of these results is to characterize the posets of irreducibles
of extremal lattices (we can also do this for p-extremal lattices in general).
Theorem 7 (Markowsky °) A bidigraph (X, Y, Ares) is P(L) for an ez-
tremal lattice iff:

1. [ X|=1|Y]=n.
2. You can number X and Y from 1 to n such that
(a) (zi,y:) is an arc for all i.
(b) if (zi,y;) is an arc, i < ;. g

Using the characterization of P(L) for extremal L leads immediately to
the following results.

Theorem 8 (Markowsky 1°) Any finite lattice is isomorphic to an interval

of some finite extremal lattice. a
Corollary 9 (Markowsky 1°) Eztremal lattices cannot. be characterized alge-
braically. ]

" Of special importance when working with p-extremal lattices are the co-
prime and prime elements.

Definition 4 1. An element a # O in L is called coprime if for all z and y
in L, xVy > a implies that x > a or y > a.

2. An element aneql in L is called prime if for allz and yin L, z Ay < a
implies that x < a ory < a. a
Coprimes are special kinds of join-irreducibles, while primes are special

kinds of meet-irreducibles. The following three result is a straightforward
consequence of the above definitions and is found in 19.
Theorem 10 The following are equivalent

1. L is distributive.
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Figure 8. Some Posets of Irreducibles of Extremal Lattices Numbered
2. All join-irreducibles are coprime.
3. All meet-irreducibles are prime. u]

The next result is a bit surprising is a generalization of the fact that
in a distributive lattice the poset of join-irreducibles in the induced order is
isomorphic to the poset of meet-irreducibles.

Theorem 11 (Markowsky 1°) In any lattice the subposet of coprimes is iso-
morphic to the subposet of primes. (]
Corollary 12 In a distributive lattice J(L) is isomorphic to M(L). O

The existence of primes and coprimes in lattices is of great significance

because it permits you to decompose the lattice into simpler lattices. Of
crucial importance is the fact that extremal lattices must contain at least one
prime and at least one coprime, which can be used to decompose them. Details
on these mappings can be found in 1° and 12, A key result that summarizes
the decomposition properties is the following theorem.
Theorem 13 (Markowsky 1°) Let L be an extremal lattice. Then L has an
atom a that is coprime and a matching prime b such that the intervals A =
la,I] and B = [O,b] partition L. Let the mapping g - B — B be given by
g(z) = z V a. Then the following are true:

1. g is injective and for all x, g(z) covers z.
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. A is extremal.
. M(L) — M(A) = b.

. Length(A) = Length(L) — 1.
. J(A) CJ(L)U(aV J(L)).

S ¢ N L N

. B is join-extremal. O

It is relatively easy to compute P(A) and P(B) from P(L). Of course, a
dual theorem holds for a coatom that is prime. The numbering that exists
for extremal lattices can be used to derive an alternative characterization of
distributive lattices. For details see 1°.

8.5 Tamari Associativity Lattices

Tamari associativity lattices are the lattices that result when you take expres-
sions in n-+1 variables and a single binary operator * and you order them as
follows. One expression covers another if it can be derived by moving paren-
theses to the left using associativity. Thus, (a *b) *c < a * (b*c). It is
a non-trivial fact that this covering relation puts a lattice structure on the
expressions. The family of lattices that results for all n is called the family of
Tamari associativity lattices.

Figure 9 shows some of the smaller Tamari lattices and indicates various
coprime/prime decompositions and some of the relations between consecutive
members in the family.

M. K. Bennett and G. Birkhoff determined the posets of irreducibles for
the Tamari lattices. It is natural to consider the posets of irreducibles of
Tamari lattices. The results are summarized in the following theorem.

Theorem 14 (Markowsky 1°)
1. Tamari lattices are extremal.
2. The coprimes are ezactly the atoms, the primes are ezactly the coatoms.

3. The longest maximal chain has length n(n-1)/2 and the shortest has
length n-1.

4. Tamari lattices are self-dual.

5. T has a coprime/prime decomposition such that B is isomorphic to T,,_1,
and the corresponding A is extremal.
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Figure 9. The Decomposition of Tamari Lattices
6. B,, the Boolean algebra on n atoms, is a retract of T, ;1.
7. Every distributive lattice of length-n is a sublattice of Tp41. o

8.6 Permutation Lattices

Permutations can be ordered using a covering relationship similar to the one
described for the Tamari lattices. 1! presents the structure of the P(S,) where
S, is the permutation group on n elements. The key results on the structure
of P(S,) are summarized in the following theorem.

Theorem 15 (Markowsky 11)

1. The join-irreducibles of S, correspond to pairs of subsets of 1,...n, (A, B),
such that A and B are complements and A is not of the form 1,...,i for
any i.

2. The meet-irreducibles of S, correspond to pairs of subsets of 1,...,m,
(C, D), such that C and D are complements and D is not of the form
1,...,3 for any i. -
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3. A join-irreducible, (A,B), of S, is connected to a meet-irreducible,
(C,D), of Sp in P(S,) iff max(AN D) > min(BNC). o

There are many additional properties of S, that are derived in !! that we
will not discuss further here.

8.7 Additional Applications

There are many additional applications for the ideas presented in this paper.
One application is to check a poset to see whether it is a lattice or not. The
idea is to assume that it is a lattice and to construct its poset of irreducibles.
One can test whether the resulting bidigraph satisfies the conditions for being
a poset of irreducibles of a lattice and whether one reconstructs the original
poset from the supposed poset of irreducibles.

Many results about concept lattices are results about the poset of irre-
ducibles of a lattice, the results in that area provide an example of the power
of this approach. Furthermore, as noted earlier there are many decomposi-
tions and representations that can be applied to lattices. This is an area that
deserves further study. For some ideas in this area see 8.
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